搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响

李文秋 赵斌 王刚

引用本文:
Citation:

电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响

李文秋, 赵斌, 王刚

Effects of electron temperature on energy deposition properties of electromagnetic modes propagating in helicon plasma

Li Wen-Qiu, Zhao Bin, Wang Gang
PDF
HTML
导出引用
  • 采用考虑粒子热效应及粒子温度各向异性的温等离子体介电张量模型, 借助绝缘边界条件下径向密度均匀分布等离子体柱中螺旋波与Trivelpiece-Gould (TG)波的本征模色散关系, 理论分析了螺旋波等离子体中典型电子温度范围内中等密度、低磁场情形下m = –1, 0, +1角向模的能量沉积特性. 研究结果表明: 在ω/2π = 13.56 MHz, Ti = 0.1Te参量条件下, 存在一个临界轴向静磁场值B0,c, 当B0 < B0,c时螺旋波变为消逝波; 存在一个临界电子温度值Te,c, 当Te < Te,c时TG波变为消逝波; 当波频率靠近电子回旋频率时, TG波的回旋阻尼开始显著陡升; 当电子横纵向温度比Te⊥/Tez大于某一临界值时, TG波变为增长波; 在螺旋波放电典型电子温度Te ∈ (3 eV, 5 eV)范围内, TG波朗道阻尼和碰撞阻尼致使的能量沉积在不同范围内占据主导地位.
    Understanding the power deposition characteristic of high density helicon wave plasma source is critical for further investigating into the discharge mechanism of helicon wave discharge. Based on the warm plasma dielectric tensor model which contains both the particle thermal effect and temperature anisotropy and using the insulting boundary condition, the eigenmode dispersion relation of helicon wave and Trivelpiece-Gould (TG) wave propagating in radially uniform plasma column are numerically obtained. Then based on the eigenmode dispersion relation and exact field distribution in the plasma column, the mode coupling properties between the helicon wave and TG wave, the parametric dependence of the cyclotron damping properties of the electron cyclotron wave (TG wave) and power deposition properties of the m = –1, 0, +1 modes under moderate plasma density and low magnetic fields conditions are theoretically investigated in typical helicon plasma parameter range. The detailed investigations are shown below. Under typical helicon plasma parameter conditions, i.e. wave frequency ω/2π = 13.56 MHz and the ion temperature is one-tenth of the electron temperature, there exist a critical magnetic field value B0,c and a critical electron temperature value Te,c for which under the conditions of B0 < B0,c the helicon wave becomes an evanescent wave and the TG wave becomes an evanescent wave when Te < Te,c. The cyclotron damping of the TG wave dramatically increases as the wave frequency approaches to the electron cyclotron frequency. The TG wave becomes a growth wave when the ratio of perpendicular electron temperature to parallel electron temperature is above a certain value. For the high magnetic field, i.e. ω/ωce = 0.1, most of the power deposition is deposited in the central core region, while for the low magnetic field, i.e. ω/ωce = 0.9, the power is deposited mainly in the outer region of plasma column. For typical helicon plasma electron temperature range, Te ∈ (3 eV, 5 eV), the energy depositions induced by the collisional damping and Landau damping of the TG wave are dominant for different electron temperature ranges, which implies that different damping mechanisms have different heating intensities for electrons. Under current parameter condition, compared with the m = +1 mode, the m = –1 and m = 0 mode of the TG wave play major role in the power deposition process, although the cyclotron damping of the TG wave dominates the power deposition in this typical electron temperature range. All these conclusions provide some useful clues for us to better understand the high ionization mechanism of helicon wave discharge.
      通信作者: 李文秋, beiste@163.com
    • 基金项目: 国家留学基金委公派留学项目(批准号: 201804910897)和国家“万人计划”科技创新领军人才(批准号: Y8BF130272)资助课题
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the Government Sponsored Study Abroad Program of the Chinese Scholarship Council (CSC) (Grant No. 201804910897) and the Science and Technology Innovation Leading Talent Project of the National “Ten Thousand Talents Program” (Grant No. Y8BF130272)
    [1]

    Diaz F R C 2000 Sci. Am. 283 90

    [2]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [3]

    Arefiev A V, Breizman B N 2004 Phys. Plasmas 11 2942Google Scholar

    [4]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar

    [5]

    Ho T M, Baturkin V, Grimm C, et al. 2017 Space Sci. Rev. 208 339Google Scholar

    [6]

    Mikouchi T, Komatsu M, Hagiya K, et al. 2014 Earth, Planets Space 66 1Google Scholar

    [7]

    Fiore G, Fedele R, de Angelis U 2014 Phys. Plasmas 21 113105Google Scholar

    [8]

    Reuter D C, Simon A A, Hair J, et al. 2018 Space Sci. Rev. 214 54Google Scholar

    [9]

    McMahon J W, Scheeres D J, Hesar S G, et al. 2018 Space Sci. Rev. 214 43Google Scholar

    [10]

    Bos B J, Ravine M A, Caplinger M, et al. 2018 Space Sci. Rev. 214 37Google Scholar

    [11]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [12]

    Shamrai K P 1998 Plasma Sources Sci. Technol. 7 499Google Scholar

    [13]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

    [14]

    Arnush D 2000 Phys. Plasmas 7 3042Google Scholar

    [15]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [16]

    Blackwell D D, Madziwa T G, Arnush D, et al. 2002 Phys. Rev. Lett. 88 145002Google Scholar

    [17]

    Kim S H, Hwang Y S 2008 Plasma Phys. Controlled Fusion 50 035007Google Scholar

    [18]

    Isayama S, Hada T, Shinohara S, et al. 2016 Phys. Plasmas 23 063513Google Scholar

    [19]

    成玉国, 程谋森, 王墨戈, 等 2014 物理学报 63 035203Google Scholar

    Cheng Y G, Cheng M S, Wang M G, et al. 2014 Acta Phys.Sin. 63 035203Google Scholar

    [20]

    平兰兰, 张新军, 杨桦, 等 2019 物理学报 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, et al. 2019 Acta Phys.Sin. 68 205201Google Scholar

    [21]

    Arnush D, Chen F F 1998 Phys. Plasmas 5 1239Google Scholar

    [22]

    Sakawa Y, Kunimatsu H, Kikuchi H, Fukui Y, Shoji T 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [23]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [24]

    Fuchs V, Ram A K, Schultz S D, Bers A 1995 Phys. Plasmas 2 1637Google Scholar

    [25]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) pp1–3

    [26]

    Gasimov G R, Abusutash Z A 2015 Int. J. Differ. Equ. Appl. 14 252

  • 图 1  被绝缘边界包裹的等离子体柱横向截面示意图

    Fig. 1.  Cross section of plasma column surround by insulating boundary.

    图 2  (a) 静磁场与 (b) 电子温度对whistler waves的ES与EM分支耦合关系的影响

    Fig. 2.  Influences of (a) magnetic field and (b) electron temperature on the mode coupling properties of ES and EM branches for whistler waves.

    图 3  Whistler waves的色散关系

    Fig. 3.  Dispersion relation of the whistler waves.

    图 4  Whistler waves纵向波数的实部与虚部随纵向电子温度的变化关系

    Fig. 4.  Corresponding relation of real and imaginary parts of the axial wave number of the whistler waves with the axial electron temperature.

    图 5  Whistler waves纵向波数的实部与虚部随电子温度各向异性因子的变化关系

    Fig. 5.  Corresponding relation of real and imaginary parts of the axial wave number of the whistler waves with the electron temperature anisotropy factor

    图 6  总电场径向分布 (a), (b), (c) ω/ωce = 0.1; (d), (e), (f) ω/ωce = 0.9

    Fig. 6.  Total electric field radial profiles for (a), (b), (c) ω/ωce = 0.1 and (d), (e), (f) ω/ωce = 0.9.

    图 7  总功率沉积径向分布 (a), (b), (c) ω/ωce = 0.1; (d), (e), (f) ω/ωce = 0.9

    Fig. 7.  Radial distributions of the total power deposition for: (a), (b), (c) ω/ωce = 0.1 and (d), (e), (f) ω/ωce = 0.9.

    图 8  螺旋波与TG波的功率沉积随轴向静磁场的变化 (a) m = –1 模; (b) m = 0 模; (c) m = +1 模

    Fig. 8.  Power deposition profiles of the helicon and TG waves are given as functions of axial static magnetic fields for (a) m = –1 mode; (b) m = 0 mode; (c) m = +1 mode.

    图 9  螺旋波与TG波功率沉积随电子温度的变化 (a) m = –1 模; (b) m = 0 模; (c) m = +1 模

    Fig. 9.  Power deposition profiles of helicon and TG waves are given as functions of electron temperature for (a) m = –1 mode; (b) m = 0 mode; (c) m = +1 mode.

    图 10  螺旋波与TG波的碰撞阻尼和朗道阻尼致使的功率沉积随电子温度的变化 (a) m = –1 模; (b) m = 0 模

    Fig. 10.  Power deposition profiles induced by the collisional damping and Landau damping of helicon and TG waves are given as functions of electron temperature for (a) m = –1 mode; (b) m = 0 mode.

    表 1  本征模色散关系元素

    Table 1.  Elements of eigenmode dispersion relation.

    ${Q_{s\ell }}$$\ell = 1$$\ell = {\rm{2}}$$\ell = {\rm{3}}$
    $s = 1$${{\rm{J}}_m}({k_{ \bot , {\rm{H}}}}a)$${{\rm{J}}_m}({k_{ \bot , TG}}a)$$- {\rm{j} }{k_{ \bot , v} }{\rm{H} }_m^{(1)}({k_{ \bot , v} }a)$
    $s = {\rm{2}}$$k_{ \bot , {\rm{TG} } }^2[ m{k_z}{ {\rm{J} }_m}({k_{ \bot , {\rm{H} } } }a) \\ +{\beta _1}{k_{ \bot , {\rm{H} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{H} } } }a) ]$$k_{ \bot , {\rm{H} } }^2[ m{k_z}{ {\rm{J} }_m}({k_{ \bot , {\rm{TG} } } }a) \\ +{\beta _2}{k_{ \bot , {\rm{TG} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{TG} } } }a) ]$${\rm{j} }k_{ \bot , {\rm{H} } }^2 k_{ \bot , {\rm{TG} } }^2 m{\rm{H} }_m^{(1)}({k_{ \bot , v} }a)$
    $s = {\rm{3}}$$k_{ \bot , {\rm{TG} } }^2[ m{\beta _1}{ {\rm{J} }_m}({k_{ \bot , {\rm{H} } } }a) \\ +{k_z}{k_{ \bot , {\rm{H} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{H} } } }a) ]$$k_{ \bot , {\rm{H} } }^2[ m{\beta _2}{ {\rm{J} }_m}({k_{ \bot , {\rm{TG} } } }a) \\ +{k_z}{k_{ \bot , {\rm{TG} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{TG} } } }a) ]$${\rm{j} }k_{ \bot , {\rm{H} } }^2 k_{ \bot , {\rm{TG} } }^2{k_{ \bot , v} }a{\rm{H} }_m^{(1)\prime }({k_{ \bot , v} }a)$
    下载: 导出CSV
  • [1]

    Diaz F R C 2000 Sci. Am. 283 90

    [2]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [3]

    Arefiev A V, Breizman B N 2004 Phys. Plasmas 11 2942Google Scholar

    [4]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar

    [5]

    Ho T M, Baturkin V, Grimm C, et al. 2017 Space Sci. Rev. 208 339Google Scholar

    [6]

    Mikouchi T, Komatsu M, Hagiya K, et al. 2014 Earth, Planets Space 66 1Google Scholar

    [7]

    Fiore G, Fedele R, de Angelis U 2014 Phys. Plasmas 21 113105Google Scholar

    [8]

    Reuter D C, Simon A A, Hair J, et al. 2018 Space Sci. Rev. 214 54Google Scholar

    [9]

    McMahon J W, Scheeres D J, Hesar S G, et al. 2018 Space Sci. Rev. 214 43Google Scholar

    [10]

    Bos B J, Ravine M A, Caplinger M, et al. 2018 Space Sci. Rev. 214 37Google Scholar

    [11]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [12]

    Shamrai K P 1998 Plasma Sources Sci. Technol. 7 499Google Scholar

    [13]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

    [14]

    Arnush D 2000 Phys. Plasmas 7 3042Google Scholar

    [15]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [16]

    Blackwell D D, Madziwa T G, Arnush D, et al. 2002 Phys. Rev. Lett. 88 145002Google Scholar

    [17]

    Kim S H, Hwang Y S 2008 Plasma Phys. Controlled Fusion 50 035007Google Scholar

    [18]

    Isayama S, Hada T, Shinohara S, et al. 2016 Phys. Plasmas 23 063513Google Scholar

    [19]

    成玉国, 程谋森, 王墨戈, 等 2014 物理学报 63 035203Google Scholar

    Cheng Y G, Cheng M S, Wang M G, et al. 2014 Acta Phys.Sin. 63 035203Google Scholar

    [20]

    平兰兰, 张新军, 杨桦, 等 2019 物理学报 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, et al. 2019 Acta Phys.Sin. 68 205201Google Scholar

    [21]

    Arnush D, Chen F F 1998 Phys. Plasmas 5 1239Google Scholar

    [22]

    Sakawa Y, Kunimatsu H, Kikuchi H, Fukui Y, Shoji T 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [23]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [24]

    Fuchs V, Ram A K, Schultz S D, Bers A 1995 Phys. Plasmas 2 1637Google Scholar

    [25]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) pp1–3

    [26]

    Gasimov G R, Abusutash Z A 2015 Int. J. Differ. Equ. Appl. 14 252

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 物理学报, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [3] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响. 物理学报, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [4] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系. 物理学报, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [5] 季佩宇, 黄天源, 陈佳丽, 诸葛兰剑, 吴雪梅. 螺旋波等离子体制备多种碳基薄膜原位诊断研究. 物理学报, 2021, 70(9): 097201. doi: 10.7498/aps.70.20201809
    [6] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波. 物理学报, 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [7] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [8] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [9] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应. 物理学报, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [10] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析. 物理学报, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [11] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择. 物理学报, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [12] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [13] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [14] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [15] 王 亮, 曹金祥, 王 艳, 牛田野, 王 舸, 朱 颖. 电磁脉冲在实验室等离子体中传播时间的实验研究. 物理学报, 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [16] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [17] 周国成, 曹晋滨, 王德驹, 蔡春林. 无碰撞等离子体电流片中的低频波. 物理学报, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [18] 谢鸿全, 刘濮鲲, 李承跃, 鄢 扬, 刘盛纲. 等离子体填充波纹波导中低频模式特性分析. 物理学报, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
    [19] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  4874
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-07-11
  • 上网日期:  2020-11-13
  • 刊出日期:  2020-11-05

/

返回文章
返回