-
透明铁电陶瓷是一类具有电光效应的功能陶瓷, 由于其兼具传统陶瓷耐高温、抗腐蚀、高硬度以及优异的机械性能等特性, 从而成为光电领域中的关键材料. 而当前应用较多的是对环境危害较大的铅基透明铁电陶瓷, 因此开发兼具光效应和电效应的无铅透明铁电陶瓷成为研究热点之一. 本文在铌酸钾钠基无铅压电陶瓷掺杂改性研究的基础上, 采用传统的固相合成法, 制备了铌酸钾钠基无铅透明铁电陶瓷(K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02), 并对其晶体结构、微观形貌、透过率和电学性能进行了研究分析. 研究结果表明, La3+掺杂提高了铌酸钾钠基陶瓷的透过率, 掺杂量x = 0.02的陶瓷样品在可见光范围透过率达到50%, 在红外光附近的透过率则接近60%. La3+掺杂量x = 0.01时压电常数(d33)达到110 pC/N, 机电耦合系数(kp)达到0.267. 此外陶瓷样品具有明显的铁电体特征, 居里温度高于400 ℃, 呈现出理想的驰豫铁电体特征, 是一种有望取代铅基透明铁电陶瓷的环境友好型无铅透明铁电陶瓷.Traditional transparent materials, including glasses and polymers, are chemically unstable and mechanically weak. Single crystals of some inorganic materials are also optically transparent, which are more stable than glasses and polymers. The fabrication of crystals, however, is relatively slow. Fortunately, transparent ceramics emerge as a promising candidate. Transparent ferroelectric ceramic is a kind of transparent ceramic with electro-optic effect, which also has excellent characteristics of conventional ceramics with excellent mechanical properties, resistance to high temperature, resistance against corrosion, and high hardness. Lead based transparent ferroelectric ceramic dominates this field for many years due to its superior electro-optic effect. Owing to the high toxicity of lead oxide, however, its development is significantly hampered. Therefore, it is greatly urgent to develop the lead-free transparent ferroelectric ceramics with excellent properties to replace the traditional lead based ceramics. In this paper, (K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02) lead-free transparent ferroelectric materials are fabricated by the conventional solid state reaction method and ordinary sintering process. The dependence of microstructure, phase structure, optical transmittance and electrical properties of the ceramic on composition are systemically investigated. The transparent ferroelectric ceramic with relaxor-behavior is obtained at x = 0.02. The optical transmittance of the ceramic near infrared region is as high as 60%. Meanwhile, the electrical properties of the ceramic at x = 0.01 still maintains a relatively high level (d33 = 110 pC/N, kp = 0.267). In addition, the Curie temperature for each of all the samples is higher than 400 ℃. These results suggest that this material might be a novel and promising lead-free material that could be used in a large variety of electro-optical devices.
[1] 兰国政 2008 化学工程与装备 1 46Google Scholar
Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar
[2] 许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页
Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)
[3] Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar
[4] Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar
[5] Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar
[6] Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar
[7] Haertling G H 1987 Ferroelectrics 75 25Google Scholar
[8] Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar
[9] Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar
[10] Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar
[11] Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar
[12] Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar
[13] Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar
[14] Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar
[15] Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar
[16] Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar
[17] Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar
[18] 李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)
Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)
[19] Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar
[20] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar
[21] Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar
[22] 杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)
Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)
[23] 耿志明 2015 硕士学位论文 (常州: 常州大学)
Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)
[24] Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar
[25] 郝继功 2010 硕士学位论文 (聊城: 聊城大学)
Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)
[26] 刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)
Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)
[27] Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar
期刊类型引用(0)
其他类型引用(2)
-
表 1 KNLTN-Lax陶瓷的晶胞参数
Table 1. Lattice parameters of KNLTN-Lax ceramics.
KNLTN-Lax a/Å 标准差 b/Å 标准差 c/Å 标准差 x = 0 4.00134 0.00327 3.92609 0.00424 3.96078 0.02185 x = 0.01 3.96785 0.00707 3.96785 0.00707 3.89268 0.07532 x = 0.015 3.96225 0.00393 3.96225 0.00393 3.96067 0.04487 x = 0.02 3.96368 0.00229 3.96368 0.00229 4.01192 0.02727 表 2 KNLTN-Lax陶瓷在10 kHz下的Tcw, Tm, ΔTm和γ的数值
Table 2. The parameters Tcw, Tm, ΔTm and γ for the ceramics at 10 kHz.
x 0 0.01 0.015 0.02 Tcw 433 443 440 437 Tm 427 421 408 403 ΔTm 6 22 32 34 γ 1.424 1.624 1.714 1.918 -
[1] 兰国政 2008 化学工程与装备 1 46Google Scholar
Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar
[2] 许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页
Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)
[3] Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar
[4] Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar
[5] Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar
[6] Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar
[7] Haertling G H 1987 Ferroelectrics 75 25Google Scholar
[8] Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar
[9] Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar
[10] Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar
[11] Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar
[12] Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar
[13] Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar
[14] Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar
[15] Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar
[16] Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar
[17] Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar
[18] 李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)
Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)
[19] Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar
[20] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar
[21] Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar
[22] 杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)
Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)
[23] 耿志明 2015 硕士学位论文 (常州: 常州大学)
Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)
[24] Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar
[25] 郝继功 2010 硕士学位论文 (聊城: 聊城大学)
Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)
[26] 刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)
Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)
[27] Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar
期刊类型引用(0)
其他类型引用(2)
计量
- 文章访问数: 8627
- PDF下载量: 160
- 被引次数: 2