搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场模型及其在电化学储能材料中的应用

张更 王巧 沙立婷 李亚捷 王达 施思齐

引用本文:
Citation:

相场模型及其在电化学储能材料中的应用

张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐

Phase-field model and its application in electrochemical energy storage materials

Zhang Geng, Wang Qiao, Sha Li-Ting, Li Ya-Jie, Wang Da, Shi Si-Qi
PDF
HTML
导出引用
  • 随着计算机技术的快速发展, 计算研究在探究材料体系微结构演化方面展示出巨大的优势. 作为材料动力学的一种计算研究方法, 相场模型不仅可以避免复杂的界面追踪, 而且便于处理各类外场因素, 因而受到广泛关注. 藉此本文介绍了相场模型的理论框架以及目前主流的多元多相系相场模型: Carter模型, Steinbach模型和Chen模型, 并从相场变量的解释、耦合热力学数据库的方式、体系自由能密度的构建方式以及演化方程等方面对上述三个模型进行了系统地概括和比较. 进一步, 聚焦于相场模型在各向异性输运和相分离、弹性和塑性变形、裂纹扩展和断裂、枝晶生长机制等方面的应用, 系统展示了相场模型在描述电化学储能材料微结构演化以及改进其性能方面的巨大潜力. 最后, 从相场模型的理论改进和应用拓展两个方面, 讨论并展望了电化学储能材料相场模拟的未来发展方向和亟待解决的关键问题.
    With the rapid progress of computer technology, computational research exhibits significant advantages in investigating microstructure evolution of material systems. As a computational research method of material dynamics, increasing attention has been paid to the phase-field model because of its avoidance of complicated interface tracking and convenience of dealing with applied fields. Theoretical framework of the phase-field model and three current phase-field models for multicomponent multiphase systems (the Carter, Steinbach, and Chen models) are introduced and reviewed in terms of interpretation of phase-field variables, way of coupling thermodynamic database, way of constructing the free energy density, and evolution equations. This review only focuses on the application of the phase-field model in electrochemical energy storage materials, and introduces its existing phase-field simulation results, which demonstrates that the phase-field model has tremendous potential in describing the microstructure evolution (anisotropic transport and phase separation, elastic and plastic deformation, crack propagation and fracture, dendrite growth, etc) and improving the performance of electrochemical energy storage materials. Finally, from two aspects of improving phase-field theory and extending application, future development trend and problems to be solved of phase-field simulations in electrochemical energy storage materials are discussed and looked ahead.
      通信作者: 李亚捷, liyajiejuly@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874254)和上海市浦江人才计划(批准号: 2019PJD016)资助的课题
      Corresponding author: Li Ya-Jie, liyajiejuly@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874254) and Shanghai Pujiang Talents Program, China (Grant No. 2019PJD016)
    [1]

    Gogotsi Y, Simon P 2011 Science 334 917Google Scholar

    [2]

    Ceder G 2010 MRS Bull. 35 693Google Scholar

    [3]

    Wang A P, Kadam S, Li H, Shi S Q, Qi Y 2018 NPJ Comput. Mater. 4 15Google Scholar

    [4]

    Andersen H C 1980 J. Chem. Phys. 72 2384Google Scholar

    [5]

    Stramer O 2001 J. Am. Stat. Assoc. 96 342

    [6]

    Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R 2016 Chin. Phys. B 25 018212Google Scholar

    [7]

    Zou Z Z, Li Y Y, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q 2020 Chem. Rev. 120 4169Google Scholar

    [8]

    Biner S B 2017 Programming Phase-Field Modeling (Berlin: Springer)

    [9]

    Steinbach I, Pezzolla F, Nestler B, Sedklberg M, Ptieler R, Schmitz G J, Rezende J L L 1996 Physica D 94 135Google Scholar

    [10]

    De Groot S R, Mazur P 2013 Non-Equilibrium Thermodynamics (Courier Corporation)

    [11]

    Wheeler A A, Boettinger W S, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [12]

    Kazaryan A, Wang Y, Dregia S A, Patton B R 2000 Phys. Rev. B 61 14275Google Scholar

    [13]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323Google Scholar

    [14]

    Simmons J P, Shen C, Wang Y 2000 Scr. Mater. 43 935Google Scholar

    [15]

    Granasy L, Pusztai T, Saylor D, Warren J A 2007 Phys. Rev. Lett. 98 035703Google Scholar

    [16]

    Chakrabarti D J, Laughlin D E 2004 Prog. Mater. Sci. 49 389Google Scholar

    [17]

    Xu Z, Meakin P 2008 J. Chem. Phys. 129 014705Google Scholar

    [18]

    Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B 2019 Acta Mater. 164 184Google Scholar

    [19]

    Wang Y U 2006 Acta Mater. 54 953Google Scholar

    [20]

    Koslowski M, Cuitino A M, Ortiz M 2002 J. Mech. Phys. Solids 50 2597Google Scholar

    [21]

    Wang Y U, Jin Y M, Cuitin A M, Khachaturyan A G 2001 Acta Mater. 49 1847Google Scholar

    [22]

    Boussinot G, Le Bouar Y, Finel A 2010 Acta Mater. 58 4170Google Scholar

    [23]

    Yu P, Hu S Y, Chen L Q, Du Q 2005 J. Comput. Phys. 208 34Google Scholar

    [24]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107Google Scholar

    [25]

    Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320Google Scholar

    [26]

    Hakim V, Karma A 2009 J. Mech. Phys. Solids 57 342Google Scholar

    [27]

    Karma A, Kessler D A, Levine H 2001 Phys. Rev. Lett. 87 045501Google Scholar

    [28]

    Cahn J W 1961 Acta Metall. Sin. 9 795Google Scholar

    [29]

    Allen S M, Cahn J W 1972 Acta Metall. Sin. 20 423Google Scholar

    [30]

    Kim S G, Kim W T, Suzuki T 1999 Phys. Rev. E 60 7186Google Scholar

    [31]

    Zhang L, Steinbach I 2012 Acta Mater. 60 2702Google Scholar

    [32]

    Steinbach I, Zhang L, Plapp M 2012 Acta Mater. 60 2689Google Scholar

    [33]

    Cogswell D A, Carter W C 2011 Phys. Rev. E 83 061602

    [34]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [35]

    Yu H C, Wang F, Amatucci G G, Thornton K 2016 J. Phase. Equilib. Diffus. 37 86Google Scholar

    [36]

    Garcı́a R E, Bishop C M, Carter W C 2004 Acta Mater. 52 11Google Scholar

    [37]

    Guyer J E, Boettinger W J, Warren J A, McFadden G B 2004 Phys. Rev. E 69 021603Google Scholar

    [38]

    Guyer J E, Boettinger W J, Warren J A, McFadden G B 2004 Phys. Rev. E 69 021604Google Scholar

    [39]

    Han B C, Ven A V d, Morgan D, Ceder G 2004 Electrochim. Acta 49 4691Google Scholar

    [40]

    Cogswell D A, Bazant M Z 2012 ACS Nano 6 2215Google Scholar

    [41]

    Singh G K, Ceder G, Bazant M Z 2008 Electrochim. Acta 53 7599Google Scholar

    [42]

    Bazant M Z 2012 arXiv preprint arXiv 1208 1587

    [43]

    Bai P, Cogswell D A, Bazant M Z 2011 Nano. Lett. 11 4890Google Scholar

    [44]

    Hong L, Li L, Chen-Wiegart Y K, Wang J, Xiang K, Gan L, Li W, Meng F, Wang F, Wang J, Chiang Y M, Jin S, Tang M 2017 Nat. Commun. 8 1194Google Scholar

    [45]

    Li Y Y, Chen H G, Lim K, Deng H D, Lim J, Fraggedakis D, Attia P M, Lee S C, Jin N, Moškon J, Guan Z, Gent W E, Hong J, Yu Y S, Gaberšček M, Islam M S, Bazant M Z, Chueh W C 2018 Nat. Mater. 17 915Google Scholar

    [46]

    Fleck M, Federmann H, Pogorelov E 2018 Comput. Mater. Sci. 153 288Google Scholar

    [47]

    Zhang X Y, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351Google Scholar

    [48]

    Zuo P, Zhao Y P 2015 Phys. Chem. Chem. Phys. 17 287Google Scholar

    [49]

    Lim C, Yan B, Yin L, Zhu L 2012 Electrochim. Acta 75 279Google Scholar

    [50]

    Gao F, Hong W 2016 J. Mech. Phys. Solids 94 18Google Scholar

    [51]

    Chen L, Fan F, Hong L, Chen J, Ji Y Z, Zhang S L, Zhu T, Chen L Q 2014 J. Electrochem. Soc. 161 F3164Google Scholar

    [52]

    Zhang X, Krischok A, Linder C 2016 Comput. Method Appl. M. 312 51Google Scholar

    [53]

    Zhao K, Pharr M, Vlassak J J, Suo Z 2011 J. Appl. Phys. 109 016110Google Scholar

    [54]

    Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z 2011 J. Am. Ceram. Soc. 94 S226Google Scholar

    [55]

    Bower A F, Guduru P R, Sethuraman V A 2011 J. Mech. Phys. Solids. 59 804Google Scholar

    [56]

    Walk A C, Huttin M, Kamlah M 2014 Eur. J. Mech. A.Solids 48 74Google Scholar

    [57]

    Aranson I S, Kalatsky V A, Vinokur V M 2000 Phys. Rev. Lett. 85 118Google Scholar

    [58]

    Marconi V I, Jagla E A 2005 Phys. Rev. E 71 036110Google Scholar

    [59]

    Spatschek R, Muller-Gugenberger C, Brener E, Nestler B 2007 Phys. Rev. E 75 066111Google Scholar

    [60]

    Miehe C, Hofacker M, Welschinger F 2010 Comput. Method Appl. M. 199 2765Google Scholar

    [61]

    Miehe C, Welschinger F, Hofacker M 2010 Mech. Phys. Solids 58 1716Google Scholar

    [62]

    Hofacker M, Miehe C 2013 Int. J. Numer. Meth. Eng. 93 276Google Scholar

    [63]

    Bhandakkar T K, Gao H 2010 Int. J. Solids Struct. 47 1424Google Scholar

    [64]

    Bhandakkar T K, Gao H 2011 Int. J. Solids Struct. 48 2304Google Scholar

    [65]

    Woodford W H, Chiang Y M, Carter W C 2010 J. Electrochem. Soc. 157 A1052Google Scholar

    [66]

    Zhu M, Park J, Sastry A M 2012 J. Electrochem. Soc. 159 A492Google Scholar

    [67]

    Gao Y F, Zhou M 2013 J. Power Sources 230 176Google Scholar

    [68]

    Klinsmann M, Rosato D, Kamlah M, McMeeking R M 2016 Mech. Phys. Solids 92 313Google Scholar

    [69]

    Zhao K, Pharr M, Vlassak J J, Suo Z 2010 J. Appl. Phys. 108 073517Google Scholar

    [70]

    Huttin M, Kamlah M 2012 J. Appl. Phys. 101 133902

    [71]

    Liang L, Chen L Q 2014 Appl. Phys. Lett. 105 263903Google Scholar

    [72]

    Miehe C, Dal H, Schänzel L M, Raina A 2016 Int. J. Numer. Meth. Eng. 106 683Google Scholar

    [73]

    Zhao Y, Xu B X, Stein P, Gross D 2016 Comput. Method. Appl. M. 312 428Google Scholar

    [74]

    Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M, Shi S Q 2020 Chin. Phys. B 29 068202Google Scholar

    [75]

    Lu B, Ning C Q, Shi D X, Zhao Y F, Zhang J Q 2020 Chin. Phys. B 29 026201Google Scholar

    [76]

    Hong Z J, Viswanathan V 2020 ACS Energy Lett. 5 3254Google Scholar

    [77]

    Li Y, Hu S, Sun X, Stan M 2017 NPJ Comput. Mater. 3 1Google Scholar

    [78]

    Yamaki J I, Tobishima S I, Hayashi K, Saito K, Nemoto Y, Arakawa M 1998 J. Power Sources 74 219Google Scholar

    [79]

    Jana A, Woo S I, Vikrant K S N, García R E 2019 Energy Environ. Sci. 12 3595Google Scholar

    [80]

    Li G, Liu Z, Huang Q, Gao Y, Regula M, Wang D, Chen L Q, Wang D 2018 Nat. Energy 3 1076Google Scholar

    [81]

    Li G, Liu Z, Wang D, He X, Liu S, Gao Y, AlZahrani A, Kim S H, Chen L Q, Wang D 2019 Adv. Energy Mater. 9 1900704Google Scholar

    [82]

    Xu F D, Graff G L, Zhang i, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J, Zhang J G 2013 J. Am. Chem. Soc. 135 4450Google Scholar

    [83]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [84]

    Shibuta Y, Okajima Y, Suzuki T 2007 Sci. Technol. Adv. Mater. 8 511Google Scholar

    [85]

    Okajima Y, Shibuta Y, Suzuki T 2010 Comput. Mater. Sci. 50 118Google Scholar

    [86]

    Liang L, Qi Y, Xue F, Bhattacharya S, Harris S J, Chen L Q 2012 Phys. Rev. E 86 051609Google Scholar

    [87]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources 300 376Google Scholar

    [88]

    Tan J, Tartakovsky A M, Ferris K, Ryan E M 2016 J. Electrochem. Soc. 163 A318Google Scholar

    [89]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018 Electrochim. Acta 265 609Google Scholar

    [90]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018 MRS Commun. 8 1285Google Scholar

    [91]

    Yan H H, Bie Y H, Cu X Y, Xiong G P, Chen L 2018 Energy Convers. Manage. 161 193Google Scholar

    [92]

    Hong Z J, Viswanathan V 2018 ACS Energy Lett. 3 1737Google Scholar

    [93]

    Hong Z J, Viswanathan V 2020 ACS Energy Lett. 5 2466Google Scholar

    [94]

    Hong Z J, Viswanathan V 2019 ACS Energy Lett. 4 1012Google Scholar

    [95]

    Mu W, Liu X, Wen Z, Liu L 2019 J. Energy Storage 26 100921Google Scholar

    [96]

    Zhang R, Shen X, Cheng X B, Zhang Q 2019 Energy Storage Mater. 23 556Google Scholar

  • 图 1  相变界问题的尖锐界面和扩散界面的对比

    Fig. 1.  Comparison between sharp and diffusive interfaces for phase boundary problems.

    图 2  相场变量与Steinbach模型、Chen模型中的相权重函数的比较

    Fig. 2.  Comparison of phase field and phase-weight functions in Steinbach and Chen models.

    图 3  相场模型中研究电化学储能材料微结构演化的步骤

    Fig. 3.  Steps for investigating microstructure evolution of electrochemical energy storage materials in phase-field model.

    图 4  (a) 锂离子嵌入到FePO4时活跃面(010)快速扩散(蓝色箭头)和相分离示意图[43]; (b) LiFePO4相变过程中的三种可能的扩散路径: 体扩散、表面扩散和电解液扩散[45]

    Fig. 4.  (a) Schematic diagram of diffusion of active surface (010) (blue arrows) and phase separation when Li-ion intercalates FePO4[43]; (b) three potential migration paths in phase transition of LiFePO4: bulk, surface, and electrolyte diffusions[45].

    图 5  硅颗粒的弹性和塑性变形[50-52]

    Fig. 5.  Elastic and plastic deformations of Si particles[50-52].

    图 6  锂化过程中的裂纹扩展 (a)初始状态; (b)相偏析导致裂纹扩展; (c)相界面赶上裂纹尖端; (d)裂纹尖端在相界面处开始分叉; (e)相界面离开裂纹尖端向中心移动; (f)反应停止[73]

    Fig. 6.  Crack propagation during lithiation process: (a) Initial state; (b) phase segregation generates crack propagation; (c) the phase interface catches up with the crack tip; (d) the crack tip starts to branch at the phase interphase; (e) phase interface leaves crack tip and moves towards center; (f) the reaction stops [73].

    图 7  相场模型模拟的Li枝晶生长 (a) 序参量, (b) Li+浓度和(c)电势的演化[87]

    Fig. 7.  Dendrite growth of Li simulated by phase-field model: evolution of (a) order parameter, (b) concentration of Li+, and (c) electric potential [87].

  • [1]

    Gogotsi Y, Simon P 2011 Science 334 917Google Scholar

    [2]

    Ceder G 2010 MRS Bull. 35 693Google Scholar

    [3]

    Wang A P, Kadam S, Li H, Shi S Q, Qi Y 2018 NPJ Comput. Mater. 4 15Google Scholar

    [4]

    Andersen H C 1980 J. Chem. Phys. 72 2384Google Scholar

    [5]

    Stramer O 2001 J. Am. Stat. Assoc. 96 342

    [6]

    Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R 2016 Chin. Phys. B 25 018212Google Scholar

    [7]

    Zou Z Z, Li Y Y, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q 2020 Chem. Rev. 120 4169Google Scholar

    [8]

    Biner S B 2017 Programming Phase-Field Modeling (Berlin: Springer)

    [9]

    Steinbach I, Pezzolla F, Nestler B, Sedklberg M, Ptieler R, Schmitz G J, Rezende J L L 1996 Physica D 94 135Google Scholar

    [10]

    De Groot S R, Mazur P 2013 Non-Equilibrium Thermodynamics (Courier Corporation)

    [11]

    Wheeler A A, Boettinger W S, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [12]

    Kazaryan A, Wang Y, Dregia S A, Patton B R 2000 Phys. Rev. B 61 14275Google Scholar

    [13]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323Google Scholar

    [14]

    Simmons J P, Shen C, Wang Y 2000 Scr. Mater. 43 935Google Scholar

    [15]

    Granasy L, Pusztai T, Saylor D, Warren J A 2007 Phys. Rev. Lett. 98 035703Google Scholar

    [16]

    Chakrabarti D J, Laughlin D E 2004 Prog. Mater. Sci. 49 389Google Scholar

    [17]

    Xu Z, Meakin P 2008 J. Chem. Phys. 129 014705Google Scholar

    [18]

    Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B 2019 Acta Mater. 164 184Google Scholar

    [19]

    Wang Y U 2006 Acta Mater. 54 953Google Scholar

    [20]

    Koslowski M, Cuitino A M, Ortiz M 2002 J. Mech. Phys. Solids 50 2597Google Scholar

    [21]

    Wang Y U, Jin Y M, Cuitin A M, Khachaturyan A G 2001 Acta Mater. 49 1847Google Scholar

    [22]

    Boussinot G, Le Bouar Y, Finel A 2010 Acta Mater. 58 4170Google Scholar

    [23]

    Yu P, Hu S Y, Chen L Q, Du Q 2005 J. Comput. Phys. 208 34Google Scholar

    [24]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107Google Scholar

    [25]

    Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320Google Scholar

    [26]

    Hakim V, Karma A 2009 J. Mech. Phys. Solids 57 342Google Scholar

    [27]

    Karma A, Kessler D A, Levine H 2001 Phys. Rev. Lett. 87 045501Google Scholar

    [28]

    Cahn J W 1961 Acta Metall. Sin. 9 795Google Scholar

    [29]

    Allen S M, Cahn J W 1972 Acta Metall. Sin. 20 423Google Scholar

    [30]

    Kim S G, Kim W T, Suzuki T 1999 Phys. Rev. E 60 7186Google Scholar

    [31]

    Zhang L, Steinbach I 2012 Acta Mater. 60 2702Google Scholar

    [32]

    Steinbach I, Zhang L, Plapp M 2012 Acta Mater. 60 2689Google Scholar

    [33]

    Cogswell D A, Carter W C 2011 Phys. Rev. E 83 061602

    [34]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [35]

    Yu H C, Wang F, Amatucci G G, Thornton K 2016 J. Phase. Equilib. Diffus. 37 86Google Scholar

    [36]

    Garcı́a R E, Bishop C M, Carter W C 2004 Acta Mater. 52 11Google Scholar

    [37]

    Guyer J E, Boettinger W J, Warren J A, McFadden G B 2004 Phys. Rev. E 69 021603Google Scholar

    [38]

    Guyer J E, Boettinger W J, Warren J A, McFadden G B 2004 Phys. Rev. E 69 021604Google Scholar

    [39]

    Han B C, Ven A V d, Morgan D, Ceder G 2004 Electrochim. Acta 49 4691Google Scholar

    [40]

    Cogswell D A, Bazant M Z 2012 ACS Nano 6 2215Google Scholar

    [41]

    Singh G K, Ceder G, Bazant M Z 2008 Electrochim. Acta 53 7599Google Scholar

    [42]

    Bazant M Z 2012 arXiv preprint arXiv 1208 1587

    [43]

    Bai P, Cogswell D A, Bazant M Z 2011 Nano. Lett. 11 4890Google Scholar

    [44]

    Hong L, Li L, Chen-Wiegart Y K, Wang J, Xiang K, Gan L, Li W, Meng F, Wang F, Wang J, Chiang Y M, Jin S, Tang M 2017 Nat. Commun. 8 1194Google Scholar

    [45]

    Li Y Y, Chen H G, Lim K, Deng H D, Lim J, Fraggedakis D, Attia P M, Lee S C, Jin N, Moškon J, Guan Z, Gent W E, Hong J, Yu Y S, Gaberšček M, Islam M S, Bazant M Z, Chueh W C 2018 Nat. Mater. 17 915Google Scholar

    [46]

    Fleck M, Federmann H, Pogorelov E 2018 Comput. Mater. Sci. 153 288Google Scholar

    [47]

    Zhang X Y, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351Google Scholar

    [48]

    Zuo P, Zhao Y P 2015 Phys. Chem. Chem. Phys. 17 287Google Scholar

    [49]

    Lim C, Yan B, Yin L, Zhu L 2012 Electrochim. Acta 75 279Google Scholar

    [50]

    Gao F, Hong W 2016 J. Mech. Phys. Solids 94 18Google Scholar

    [51]

    Chen L, Fan F, Hong L, Chen J, Ji Y Z, Zhang S L, Zhu T, Chen L Q 2014 J. Electrochem. Soc. 161 F3164Google Scholar

    [52]

    Zhang X, Krischok A, Linder C 2016 Comput. Method Appl. M. 312 51Google Scholar

    [53]

    Zhao K, Pharr M, Vlassak J J, Suo Z 2011 J. Appl. Phys. 109 016110Google Scholar

    [54]

    Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z 2011 J. Am. Ceram. Soc. 94 S226Google Scholar

    [55]

    Bower A F, Guduru P R, Sethuraman V A 2011 J. Mech. Phys. Solids. 59 804Google Scholar

    [56]

    Walk A C, Huttin M, Kamlah M 2014 Eur. J. Mech. A.Solids 48 74Google Scholar

    [57]

    Aranson I S, Kalatsky V A, Vinokur V M 2000 Phys. Rev. Lett. 85 118Google Scholar

    [58]

    Marconi V I, Jagla E A 2005 Phys. Rev. E 71 036110Google Scholar

    [59]

    Spatschek R, Muller-Gugenberger C, Brener E, Nestler B 2007 Phys. Rev. E 75 066111Google Scholar

    [60]

    Miehe C, Hofacker M, Welschinger F 2010 Comput. Method Appl. M. 199 2765Google Scholar

    [61]

    Miehe C, Welschinger F, Hofacker M 2010 Mech. Phys. Solids 58 1716Google Scholar

    [62]

    Hofacker M, Miehe C 2013 Int. J. Numer. Meth. Eng. 93 276Google Scholar

    [63]

    Bhandakkar T K, Gao H 2010 Int. J. Solids Struct. 47 1424Google Scholar

    [64]

    Bhandakkar T K, Gao H 2011 Int. J. Solids Struct. 48 2304Google Scholar

    [65]

    Woodford W H, Chiang Y M, Carter W C 2010 J. Electrochem. Soc. 157 A1052Google Scholar

    [66]

    Zhu M, Park J, Sastry A M 2012 J. Electrochem. Soc. 159 A492Google Scholar

    [67]

    Gao Y F, Zhou M 2013 J. Power Sources 230 176Google Scholar

    [68]

    Klinsmann M, Rosato D, Kamlah M, McMeeking R M 2016 Mech. Phys. Solids 92 313Google Scholar

    [69]

    Zhao K, Pharr M, Vlassak J J, Suo Z 2010 J. Appl. Phys. 108 073517Google Scholar

    [70]

    Huttin M, Kamlah M 2012 J. Appl. Phys. 101 133902

    [71]

    Liang L, Chen L Q 2014 Appl. Phys. Lett. 105 263903Google Scholar

    [72]

    Miehe C, Dal H, Schänzel L M, Raina A 2016 Int. J. Numer. Meth. Eng. 106 683Google Scholar

    [73]

    Zhao Y, Xu B X, Stein P, Gross D 2016 Comput. Method. Appl. M. 312 428Google Scholar

    [74]

    Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M, Shi S Q 2020 Chin. Phys. B 29 068202Google Scholar

    [75]

    Lu B, Ning C Q, Shi D X, Zhao Y F, Zhang J Q 2020 Chin. Phys. B 29 026201Google Scholar

    [76]

    Hong Z J, Viswanathan V 2020 ACS Energy Lett. 5 3254Google Scholar

    [77]

    Li Y, Hu S, Sun X, Stan M 2017 NPJ Comput. Mater. 3 1Google Scholar

    [78]

    Yamaki J I, Tobishima S I, Hayashi K, Saito K, Nemoto Y, Arakawa M 1998 J. Power Sources 74 219Google Scholar

    [79]

    Jana A, Woo S I, Vikrant K S N, García R E 2019 Energy Environ. Sci. 12 3595Google Scholar

    [80]

    Li G, Liu Z, Huang Q, Gao Y, Regula M, Wang D, Chen L Q, Wang D 2018 Nat. Energy 3 1076Google Scholar

    [81]

    Li G, Liu Z, Wang D, He X, Liu S, Gao Y, AlZahrani A, Kim S H, Chen L Q, Wang D 2019 Adv. Energy Mater. 9 1900704Google Scholar

    [82]

    Xu F D, Graff G L, Zhang i, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J, Zhang J G 2013 J. Am. Chem. Soc. 135 4450Google Scholar

    [83]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [84]

    Shibuta Y, Okajima Y, Suzuki T 2007 Sci. Technol. Adv. Mater. 8 511Google Scholar

    [85]

    Okajima Y, Shibuta Y, Suzuki T 2010 Comput. Mater. Sci. 50 118Google Scholar

    [86]

    Liang L, Qi Y, Xue F, Bhattacharya S, Harris S J, Chen L Q 2012 Phys. Rev. E 86 051609Google Scholar

    [87]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources 300 376Google Scholar

    [88]

    Tan J, Tartakovsky A M, Ferris K, Ryan E M 2016 J. Electrochem. Soc. 163 A318Google Scholar

    [89]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018 Electrochim. Acta 265 609Google Scholar

    [90]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018 MRS Commun. 8 1285Google Scholar

    [91]

    Yan H H, Bie Y H, Cu X Y, Xiong G P, Chen L 2018 Energy Convers. Manage. 161 193Google Scholar

    [92]

    Hong Z J, Viswanathan V 2018 ACS Energy Lett. 3 1737Google Scholar

    [93]

    Hong Z J, Viswanathan V 2020 ACS Energy Lett. 5 2466Google Scholar

    [94]

    Hong Z J, Viswanathan V 2019 ACS Energy Lett. 4 1012Google Scholar

    [95]

    Mu W, Liu X, Wen Z, Liu L 2019 J. Energy Storage 26 100921Google Scholar

    [96]

    Zhang R, Shen X, Cheng X B, Zhang Q 2019 Energy Storage Mater. 23 556Google Scholar

  • [1] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [2] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [3] 陈振飞, 冯露, 赵洋, 齐红蕊. 力和扩散机理下外延形貌的演化分析. 物理学报, 2015, 64(13): 138103. doi: 10.7498/aps.64.138103
    [4] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [5] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究. 物理学报, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [6] 石玉峰, 许庆彦, 柳百成. 基于改进元胞自动机模型的三元合金枝晶生长的数值模拟. 物理学报, 2012, 61(10): 108101. doi: 10.7498/aps.61.108101
    [7] 胡勇, 闫红红, 林 涛, 李金富, 周尧和. 退火态Zr55Al10Ni5Cu30块体非晶合金在轧制过程中的自由体积演化. 物理学报, 2012, 61(8): 087102. doi: 10.7498/aps.61.087102
    [8] 魏雷, 林鑫, 王猛, 黄卫东. 基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型. 物理学报, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [9] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [10] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [11] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [12] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [13] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [14] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长. 物理学报, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [15] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [16] 刘明霞, 黄 平, 张建民, 徐可为. 纳米多层膜“软"相结构参量对硬度的Hall-Petch表征. 物理学报, 2008, 57(4): 2363-2367. doi: 10.7498/aps.57.2363
    [17] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [19] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  11249
  • PDF下载量:  644
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-10-21
  • 上网日期:  2020-11-20
  • 刊出日期:  2020-11-20

/

返回文章
返回