搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频域反射法光纤延时精密测量

赵天择 杨苏辉 李坤 高彦泽 王欣 张金英 李卓 赵一鸣 刘宇哲

引用本文:
Citation:

频域反射法光纤延时精密测量

赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲

Accurate measurement of optical fiber time delay based on frequency domain reflectometry

Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe
PDF
HTML
导出引用
  • 本文提出了一种应用于光纤延时系统中实现光纤延时精密测量的新方法, 用以提高光纤延时测量的精度和准确性. 该方法以1064 nm激光调制信号作为光源, 通过测量回波信号的幅值和相位信息得到被测通道的频率响应, 采用快速傅里叶逆变换得到被测目标的延时信息, 实现光纤延时测量. 本文通过理论分析和延时测量实验对频域反射法与传统的时域测量方法进行对比, 使用频域反射法在调制频率范围10—200 MHz, 采样频率间隔0.5 MHz的实验条件下, 实现了3.3 ps延时测量分辨率, 并证明了该方法具有比时域方法更高的测量精度, 测量结果的准确性更好.
    Optical fiber time delay system has been widely used in optical-controlled phased array antenna, radar distributed network, interferometric optical fiber hydrophone and high-speed photoelectric chip. These applications require high-accuracy and high-stability time delay generated by the system. Time delay measurement directly determines the precision and resolution of the system. Therefore, high-precision time delay measurement method is of great significance in developing the optical fiber delay system. In this paper, progress and problems of optical fiber time delay measurements are discussed. A new method of precisely measuring the time delay in optical fiber is proposed. We use the frequency domain reflectometry (FDR) to avoid the discrepancy between measuring range and measuring precision, which exists in both time-of-flight (TOF) method and phase discrimination approach. An intensity modulated 1064 nm laser signal is used as a light source. The modulation frequency is tuned from 10 MHz to 200 MHz in steps of 0.5 MHz. The spectrum of echo signal is obtained by measuring the amplitudes and phases of echo signals at different frequency points. The delay information is obtained via the inverse fast Fourier transform (IFFT). The precision of delay measurement in our method is determined by step size of frequency variation, and a higher-precision measurement is realized by using interpolation zero algorithm. Since our method is not to modulate the optical frequency, but to control the frequency of the modulation signal loaded on the electro-optic modulator, it is easy to achieve the high-precision and high-linearity frequency modulation. In this paper, theoretical analysis and time delay measurement are used to compare the FDR method with conventional TOF measurement method. The accurate measurement of 33–200 ps is realized, and measurement error is lower than 7 ps. We also design an incremental measurement experiment to study the resolution of the FDR method, which achieves a delay resolution of 3.3 ps. The influence of temperature jitter is analyzed to prove the reliability of experimental results. It proves that the FDR method has a higher measuring accuracy than the TOF method. The time delay measurement precision can be further improved by expanding the modulation bandwidth. Our method is to be applied to an optical fiber delay system to improve the precision and resolution of system delay.
      通信作者: 杨苏辉, suhuiyang@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61835001, 61875011)资助的课题
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61835001, 61875011)
    [1]

    李炎炎, 高彦泽, 李卓, 杨苏辉, 王欣, 张金英 2019 光学学报 39 0806002Google Scholar

    Li Y Y, Gao Y Z, Li Z, Yang S H, Wang X, Zhang J Y 2019 Acta Opt. Sin. 39 0806002Google Scholar

    [2]

    陆强, 张伟, 林荣刚 2012 电子设计工程 20 160Google Scholar

    Lu Q, Zhang W, Lin R G 2012 Elec. Des. Eng. 20 160Google Scholar

    [3]

    何子述, 金林, 韩蕴洁, 严济鸿 2005 电子学报 33 12Google Scholar

    He Z S, Jin L, Han Y J, Yan J H 2005 Acta Electr. Sin. 33 12Google Scholar

    [4]

    Gao Y Z, Zhou L, Wang X, Yan H, Hao K Z, Yang S H, Li Z 2019 IEEE Access 7 93489Google Scholar

    [5]

    Wang X C, Li S P, Jiang X, Hu J T, Xue M, Xu S Z, Pan S L 2019 Chin. Opt. Lett. 17 060601Google Scholar

    [6]

    陈瑞强, 江月松, 裴朝 2013 光学学报 33 0912002Google Scholar

    Chen R Q, Jiang Y S, Pei Z 2013 Acta Opt. Sin. 33 0912002Google Scholar

    [7]

    Prokhorov D, Donchenko S S, Kolmogorov O V, Сhemesova E V 2019 SPIE Optical Metrology, Munich, Germany 2019 p1105714

    [8]

    Cui M, Zeitouny M G, Bhattacharya N 2009 Opt. Lett. 34 1982Google Scholar

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [10]

    冀航 2007 博士学位论文 (武汉: 华中科技大学)

    Ji H 2007 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [11]

    Huang X X, Yin F F, Li J Q, Dai Y T, Zhou Y, Xu K 2018 IEEE 3rd Optoelectronics Global Conference (OGC) 2018 p130

    [12]

    汪友生, 徐小平 2003 北京工业大学学报 29 424Google Scholar

    Wang Y S, Xu X P 2003 J. Beij. Univ. Tech. 29 424Google Scholar

    [13]

    Ma X W, Ma C, Xin M 2015 Elec. Qual. 3 38Google Scholar

    [14]

    Eickhoff W, Ulrich R 1981 Appl. Phys. Lett. 39 693Google Scholar

    [15]

    Illig D W, Jemison W D, Rumbaugh L, Laux A, Mullen L J 2014 Proc. of SPIE 9111 91110RGoogle Scholar

    [16]

    Illig D W, Jemison W D, Rumbaugh L, Lee R, Laux A, Mullen L 2013 Ocean Eng. 58 304Google Scholar

    [17]

    Illig D W, Rumbaugh L, Jemison W D, Laux A, Mullen L 2014 Oceans St. John's, St. John’s, Netherlands, September 14, 2014 p1

    [18]

    Yoshimichi O, Naoshi H 2018 IEEE T. Dielect. El. In. p2467

    [19]

    Chen Y, Zhao Y 2000 Chin. J. Lasers B 9 219

    [20]

    Macdonald R I 1981 Appl. Opt. 20 1840Google Scholar

    [21]

    欧阳竑, 王侠, 韦幕野, 岳耀笠 2020 光电技术应用 35 41Google Scholar

    Ou Yang H, Wang X, Wei M Y, Yue Y L 2020 Electro-Optic Tech. Appl. 35 41Google Scholar

    [22]

    闵帅博, 严利平, 崔建军, 王冬, 束红林, 陈恺 2020 计量学报 41 1332Google Scholar

    Min S B, Yan L P, Cui J J, Wang D, Shu H L, Chen K 2020 ACTA Metro. Sin. 41 1332Google Scholar

  • 图 1  频域反射法测量光纤延时原理图

    Fig. 1.  Schematic diagram of optical fiber delay measurement by frequency domain reflectometry.

    图 2  (a)频域采样信号; (b)时域信号

    Fig. 2.  (a) Frequency-domain signal; (b) time-domain plot.

    图 3  频域反射法测量光纤延时实验流程图

    Fig. 3.  Experiment of optical fiber delay measurement by frequency domain reflection method.

    图 4  103.31 m光纤延时测量 (a)探测器接收到的频域信号; (b)直接IFFT变换得到的时域测量信号; (c) m = 10M, 补零IFFT变换得到的时域测量信号

    Fig. 4.  Optical fiber delay measurement of 103.31 m optical fiber: (a) Frequency domain signal; (b) time-domain measurement signals obtained by IFFT transformation; (c) time domain measurement signal obtained by zero-padding IFFT transformation when m = 10M.

    图 5  频域反射法距离精度测试实验示意图

    Fig. 5.  Experiment of range accuracy measurement by frequency domain reflection method.

    图 6  频域反射法与相位法对参考延时测量结果的比较

    Fig. 6.  Comparison of measurement results between frequency domain reflection method and phase measuring profilometry.

    图 7  频域反射法最小可分辨延时增量的测量, m = 400M, 测量精度6.6 ps; m = 800M, 测量精度3.3 ps; m = 1600M, 测量精度1.6 ps

    Fig. 7.  Measurement results of minimum discernible delay increment by frequency domain reflection method, m = 400M, measurement accuracy 6.6 ps; m = 800M, measurement accuracy 3.3 ps; m = 1600M, measurement accuracy 1.6 ps.

    表 1  光纤延时测量结果(单位为ns)

    Table 1.  Measurement results of optical fiber delay (in ns).

    Measurement methodOptical fiber 1Optical fiber 2Optical fiber 3Optical fiber 4
    Time discrimination64.5128.6256.7516.6
    Phase measuring profilometry66.0127.9261.6512.7
    Frequency domain reflection64.5128.7256.8516.3
    下载: 导出CSV
  • [1]

    李炎炎, 高彦泽, 李卓, 杨苏辉, 王欣, 张金英 2019 光学学报 39 0806002Google Scholar

    Li Y Y, Gao Y Z, Li Z, Yang S H, Wang X, Zhang J Y 2019 Acta Opt. Sin. 39 0806002Google Scholar

    [2]

    陆强, 张伟, 林荣刚 2012 电子设计工程 20 160Google Scholar

    Lu Q, Zhang W, Lin R G 2012 Elec. Des. Eng. 20 160Google Scholar

    [3]

    何子述, 金林, 韩蕴洁, 严济鸿 2005 电子学报 33 12Google Scholar

    He Z S, Jin L, Han Y J, Yan J H 2005 Acta Electr. Sin. 33 12Google Scholar

    [4]

    Gao Y Z, Zhou L, Wang X, Yan H, Hao K Z, Yang S H, Li Z 2019 IEEE Access 7 93489Google Scholar

    [5]

    Wang X C, Li S P, Jiang X, Hu J T, Xue M, Xu S Z, Pan S L 2019 Chin. Opt. Lett. 17 060601Google Scholar

    [6]

    陈瑞强, 江月松, 裴朝 2013 光学学报 33 0912002Google Scholar

    Chen R Q, Jiang Y S, Pei Z 2013 Acta Opt. Sin. 33 0912002Google Scholar

    [7]

    Prokhorov D, Donchenko S S, Kolmogorov O V, Сhemesova E V 2019 SPIE Optical Metrology, Munich, Germany 2019 p1105714

    [8]

    Cui M, Zeitouny M G, Bhattacharya N 2009 Opt. Lett. 34 1982Google Scholar

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [10]

    冀航 2007 博士学位论文 (武汉: 华中科技大学)

    Ji H 2007 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [11]

    Huang X X, Yin F F, Li J Q, Dai Y T, Zhou Y, Xu K 2018 IEEE 3rd Optoelectronics Global Conference (OGC) 2018 p130

    [12]

    汪友生, 徐小平 2003 北京工业大学学报 29 424Google Scholar

    Wang Y S, Xu X P 2003 J. Beij. Univ. Tech. 29 424Google Scholar

    [13]

    Ma X W, Ma C, Xin M 2015 Elec. Qual. 3 38Google Scholar

    [14]

    Eickhoff W, Ulrich R 1981 Appl. Phys. Lett. 39 693Google Scholar

    [15]

    Illig D W, Jemison W D, Rumbaugh L, Laux A, Mullen L J 2014 Proc. of SPIE 9111 91110RGoogle Scholar

    [16]

    Illig D W, Jemison W D, Rumbaugh L, Lee R, Laux A, Mullen L 2013 Ocean Eng. 58 304Google Scholar

    [17]

    Illig D W, Rumbaugh L, Jemison W D, Laux A, Mullen L 2014 Oceans St. John's, St. John’s, Netherlands, September 14, 2014 p1

    [18]

    Yoshimichi O, Naoshi H 2018 IEEE T. Dielect. El. In. p2467

    [19]

    Chen Y, Zhao Y 2000 Chin. J. Lasers B 9 219

    [20]

    Macdonald R I 1981 Appl. Opt. 20 1840Google Scholar

    [21]

    欧阳竑, 王侠, 韦幕野, 岳耀笠 2020 光电技术应用 35 41Google Scholar

    Ou Yang H, Wang X, Wei M Y, Yue Y L 2020 Electro-Optic Tech. Appl. 35 41Google Scholar

    [22]

    闵帅博, 严利平, 崔建军, 王冬, 束红林, 陈恺 2020 计量学报 41 1332Google Scholar

    Min S B, Yan L P, Cui J J, Wang D, Shu H L, Chen K 2020 ACTA Metro. Sin. 41 1332Google Scholar

  • [1] 武列列, 任益充, 薛飞. 基于铁磁扭摆振子的磁场测量及其应用. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241538
    [2] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [3] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展. 物理学报, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [4] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [9] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [10] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [11] 潘浩, 曲兴华, 史春钊, 李雅婷, 张福民. 激光调频连续波测距的精度评定方法研究. 物理学报, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [12] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [13] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [14] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [15] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [16] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [17] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [18] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [19] 王繁珍, 齐国元, 陈增强, 袁著祉. 一个四翼混沌吸引子. 物理学报, 2007, 56(6): 3137-3144. doi: 10.7498/aps.56.3137
    [20] 邓玉强, 邢岐荣, 郎利影, 柴 路, 王清月, 张志刚. THz波的小波变换频谱分析. 物理学报, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
计量
  • 文章访问数:  6724
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2020-12-22
  • 上网日期:  2021-04-01
  • 刊出日期:  2021-04-20

/

返回文章
返回