搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮气火花开关击穿机制的理论和数值研究

孙强 周前红 宋萌萌 杨薇 董烨

引用本文:
Citation:

氮气火花开关击穿机制的理论和数值研究

孙强, 周前红, 宋萌萌, 杨薇, 董烨

Theoretical and numerical study on breakdown mechanism of nitrogen spark switch

Sun Qiang, Zhou Qian-Hong, Song Meng-Meng, Yang Wei, Dong Ye
PDF
HTML
导出引用
  • 三电极气体火花开关带有触发极, 相比两电极开关, 其开关导通的可控性较高, 工作电压较低且抖动小, 所以气体火花开关中三电极开关的应用较为广泛. 本文针对大气压氮气环境下的两电极开关和三电极开关的击穿机制进行了理论与数值模拟研究. 通过理论和数值计算发现, 对于平板-平板的两电极开关来说, 低电压下(小于6.3 kV)无法产生流注击穿, 高电压下(大于6.3 kV)会先形成由阴极到阳极的负流注, 然后再形成由阳极向阴极的正流注. 而在三电极开关的击穿过程中, 首先会在触发极和绝缘体之间发生击穿, 然后这个通道不断向阴阳极扩展, 最终形成阴阳极之间的电弧通道. 在本文的计算工况下, 如果需要阴极-触发极、阳极-触发极同时击穿的话, 其阴极-触发极之间的外加电压需要大于1.18 kV, 而阳极-触发极之间的外加电压需要大于3 kV. 当考虑触发极的场致发射后, 该击穿阈值可以显著降低.
    Compared with the two-electrode gas spark switch, the three-electrode gas spark switch has high controllability, low working voltage and small jitter, so the three-electrode gas spark switch is widely used in pulse power technology. The discharge of gas spark switch is high pressure gas discharge, which is characterized by high electron collision frequency (1012 Hz), small mean free path (10–6 m), short breakdown time (10–9 s), and complex physical process (including the secondary electron emission, the generation of seed electrons, the space charge effect and various collision processes between electrons and nitrogen molecules, etc). At present, it is difficult to quantitatively describe the breakdown process of the three-electrode gas switch, and the detailed theoretical research is lacking. Therefore, the breakdown mechanism of atmospheric pressure nitrogen spark switch, including two-electrode and three-electrode, is studied theoretically and numerically in this paper. The purpose of this study is to compare the simulation results of the two different gas spark switches, and obtain the characteristics of stream breakdown in different gas spark switches. Firstly, the numerical simulation and theoretical analysis of two-electrode gas spark switch are carried out. According to theoretical and numerical calculation, it can be found that for the plate-plate two-electrode switch, the stream breakdown cannot be generated under low voltage (less than 6.3 kV), while under high voltage (more than 6.3 kV), first the anode-directed streamer is formed, and then the cathode-directed streamer is created. In addition, the simulation results show that the plasma generated by the trigger can effectively reduce the breakdown voltage. Finally, the three-electrode gas spark switch is studied theoretically and numerically. It can be seen that in the breakdown process of the three-electrode gas spark switch, the breakdown first occurs between the trigger and the insulator, and then this plasma channel expands to the anode and cathode, finally forming the arc channel between the anode and the cathode. Under the calculation conditions in this paper, if the cathode-trigger and the anode-trigger are required to break down simultaneously, the applied voltage between the cathode-trigger should be greater than 1.18 kV, while the applied voltage between the anode-trigger should be greater than 3 KV. When the field emission of the trigger is considered, the breakdown threshold can be significantly reduced.
      通信作者: 周前红, zhou_qianhong@qq.com
    • 基金项目: 国家自然科学基金(批准号: 11875094, 11775032)和中国工程物理研究院院长基金(批准号: YZJJLX2019013)资助的课题
      Corresponding author: Zhou Qian-Hong, zhou_qianhong@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875094, 11775032) and the Foundation of President of China Academy of Engineering Physics, China (Grant No. YZJJLX2019013)
    [1]

    何孟兵, 李劲 2000 高电压技术 4 33Google Scholar

    He M B, Li J 2000 High Voltage Engineering 4 33Google Scholar

    [2]

    Golnabi H 1992 Rev. Sci. Instrum. 63 5804Google Scholar

    [3]

    Golnabi H, Samimi H 1994 Rev. Sci. Instrum. 65 3030Google Scholar

    [4]

    Mesyats G A 2005 Pulsed Power (New York: Kluwer Academic/ Plenum Publishers) pp29−32

    [5]

    Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar

    [6]

    Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2010 IEEE Trans. Dielectr. Electr. Insul. 17 34Google Scholar

    [7]

    邵涛, 章程, 王瑞雪 2016 高电压技术 42 685Google Scholar

    Shao T, Zhang C, Wang R X 2016 High Voltage Engineering 42 685Google Scholar

    [8]

    Peterkin F E, Williams P F 1989 Proceedings of the 7th Pulsed Power Conference Monterey, USA, June 11−14, 1989 p559

    [9]

    Macgregor S J, Tuema F A, Turnbull S M, Farish O 1997 IEEE Trans. Plasma Sci. 25 118Google Scholar

    [10]

    Osmokrovic P, Arsic N, Lazarevic Z, Kartalovic N 1996 IEEE Trans. Power Delivery 11 858Google Scholar

    [11]

    Arsic N, Osmokrovic P 1996 Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum Berkeley, USA, July 21−26, 1996 p77

    [12]

    Mcphee A J 1995 Proceedings of the 10 th IEEE International Pulsed Power Conference Albuquerque, USA, July 3−6, 1995 p781

    [13]

    Li L, Li C, Xiangdong Q, Fuchang L, Yuan P 2012 J. Appl. Phys. 111 4163Google Scholar

    [14]

    Thoma C, Welch D R, Rose D V, Zimmerman W R, Woodworth J R 2013 19th IEEE Pulsed Power Conference San Francisco, USA, June 16−21, 2013 p1

    [15]

    徐翱, 杨林, 尚绍环, 金大志, 杜涛, 谈效华 2016 强激光与粒子束 28 055004Google Scholar

    Xu A, Yang L, Shang S H, Jin D Z, Du T, Tan X H 2016 High Power Laser and Particle Beams 28 055004Google Scholar

    [16]

    徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar

    Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage Engineering 44 1922Google Scholar

    [17]

    孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843

    Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser and Particle Beams 2012 24 843 (in Chinese)

    [18]

    Larsson A 2012 IEEE Trans. Plasma Sci. 40 243Google Scholar

    [19]

    Asiunin V I, Davydov S G, Dolgov A N, Pshenichniy A A, Yakubov R 2015 Instrum. Exp. Tech. 58 70Google Scholar

    [20]

    党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛 2015 强激光与粒子束 27 065004Google Scholar

    Tang T F, Yi J H, Sun F J, Wang Z G, Jiang X F, Zeng J T 2015 High Power Laser and Particle Beams 27 065004Google Scholar

    [21]

    Huang D, Yang L J, Huo P, Ma J B, Liu S, Wang W, Yao S L 2016 Phys. Plasmas 23 4014Google Scholar

    [22]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp324−326

    [23]

    程新兵, 刘金亮, 陈蒸, 殷毅, 冯加怀 2009 高电压技术 35 1689Google Scholar

    Cheng X B, Liu J L, Chen Z, Yin Y, Feng J H 2009 High Voltage Engineering 35 1689Google Scholar

    [24]

    Hagelaar G, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [25]

    Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar

    [26]

    Go D B, Pohlman D A 2010 J. Appl. Phys. 107 69Google Scholar

    [27]

    Fu Y, Krek J, Zhang P, Verboncoeur J P 2018 Plasma Sources Sci. Technol. 27 095014Google Scholar

    [28]

    Fu Y, Yang S, Zou X, Luo H, Wang X 2016 Phys. Plasmas 23 093509Google Scholar

  • 图 1  计算域示意图 (a)两电极开关 (b)三电极开关

    Fig. 1.  Schematic diagram of the calculation domain: (a)Two-electrode switch; (b) three-electrode switch.

    图 2  初始时刻 (a)电场和(b)电势的分布

    Fig. 2.  The initial distributions of (a) electric field and (b) potential.

    图 3  不同时刻的电子密度分布(外加电压 6 kV) (a) 1 ns; (b) 2 ns; (c) 3 ns; (d) 4 ns; (e) 5 ns

    Fig. 3.  The electron density distribution at different times (applied voltage 6 kV): (a) 1 ns; (b) 2 ns; (c) 3 ns; (d) 4 ns; (e) 5 ns.

    图 4  不同时刻的电子密度分布(外加电压 8 kV) (a) 0.1 ns; (b) 0.8 ns; (c) 1.2 ns; (d) 1.6 ns; (e) 2 ns

    Fig. 4.  The electron density distribution at different times (applied voltage 8 kV): (a) 0.1 ns; (b) 0.8 ns; (c) 1.2 ns; (d) 1.6 ns; (e) 2 ns.

    图 5  不同时刻的电场分布(外加电压 8 kV) (a) 0.4 ns; (b) 0.8 ns; (c) 1.2 ns; (d) 1.6 ns; (e) 2 ns

    Fig. 5.  The electric field distribution at different times (applied voltage 8 kV): (a) 0.4 ns; (b) 0.8 ns; (c) 1.2 ns; (d) 1.6 ns; (e) 2 ns.

    图 6  不同时刻电子密度分布图 (a)外加电压2 kV; (b)外加电压4 kV

    Fig. 6.  The electron density distribution at different times: (a) Applied voltage 2 kV; (b) applied voltage 4 kV.

    图 7  不同时刻的电子密度分布图 (a) 0 ns; (b) 1 ns; (c) 2 ns; (d) 5 ns; (e) 10 ns

    Fig. 7.  The distributions of electron density at different times: (a) 0 ns; (b) 1 ns; (c) 2 ns; (d) 5 ns; (e) 10 ns.

    图 8  不同时刻的电子密度分布图 (a) 0 ns; (b) 0.1 ns; (c) 0.22 ns; (d) 0.5 ns; (e) 0.8 ns; (f) 2.5 ns

    Fig. 8.  The distributions of electron density at different times: (a) 0 ns; (b) 0.1 ns; (c) 0.22 ns; (d) 0.5 ns; (e) 0.8 ns; (f) 2.5 ns.

    图 9  电场分布图 (a) 0.1 ns; (b) 0.5 ns

    Fig. 9.  The distributions of electric field: (a) 0.1 ns; (b) 0.5 ns.

  • [1]

    何孟兵, 李劲 2000 高电压技术 4 33Google Scholar

    He M B, Li J 2000 High Voltage Engineering 4 33Google Scholar

    [2]

    Golnabi H 1992 Rev. Sci. Instrum. 63 5804Google Scholar

    [3]

    Golnabi H, Samimi H 1994 Rev. Sci. Instrum. 65 3030Google Scholar

    [4]

    Mesyats G A 2005 Pulsed Power (New York: Kluwer Academic/ Plenum Publishers) pp29−32

    [5]

    Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar

    [6]

    Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2010 IEEE Trans. Dielectr. Electr. Insul. 17 34Google Scholar

    [7]

    邵涛, 章程, 王瑞雪 2016 高电压技术 42 685Google Scholar

    Shao T, Zhang C, Wang R X 2016 High Voltage Engineering 42 685Google Scholar

    [8]

    Peterkin F E, Williams P F 1989 Proceedings of the 7th Pulsed Power Conference Monterey, USA, June 11−14, 1989 p559

    [9]

    Macgregor S J, Tuema F A, Turnbull S M, Farish O 1997 IEEE Trans. Plasma Sci. 25 118Google Scholar

    [10]

    Osmokrovic P, Arsic N, Lazarevic Z, Kartalovic N 1996 IEEE Trans. Power Delivery 11 858Google Scholar

    [11]

    Arsic N, Osmokrovic P 1996 Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum Berkeley, USA, July 21−26, 1996 p77

    [12]

    Mcphee A J 1995 Proceedings of the 10 th IEEE International Pulsed Power Conference Albuquerque, USA, July 3−6, 1995 p781

    [13]

    Li L, Li C, Xiangdong Q, Fuchang L, Yuan P 2012 J. Appl. Phys. 111 4163Google Scholar

    [14]

    Thoma C, Welch D R, Rose D V, Zimmerman W R, Woodworth J R 2013 19th IEEE Pulsed Power Conference San Francisco, USA, June 16−21, 2013 p1

    [15]

    徐翱, 杨林, 尚绍环, 金大志, 杜涛, 谈效华 2016 强激光与粒子束 28 055004Google Scholar

    Xu A, Yang L, Shang S H, Jin D Z, Du T, Tan X H 2016 High Power Laser and Particle Beams 28 055004Google Scholar

    [16]

    徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar

    Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage Engineering 44 1922Google Scholar

    [17]

    孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843

    Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser and Particle Beams 2012 24 843 (in Chinese)

    [18]

    Larsson A 2012 IEEE Trans. Plasma Sci. 40 243Google Scholar

    [19]

    Asiunin V I, Davydov S G, Dolgov A N, Pshenichniy A A, Yakubov R 2015 Instrum. Exp. Tech. 58 70Google Scholar

    [20]

    党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛 2015 强激光与粒子束 27 065004Google Scholar

    Tang T F, Yi J H, Sun F J, Wang Z G, Jiang X F, Zeng J T 2015 High Power Laser and Particle Beams 27 065004Google Scholar

    [21]

    Huang D, Yang L J, Huo P, Ma J B, Liu S, Wang W, Yao S L 2016 Phys. Plasmas 23 4014Google Scholar

    [22]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp324−326

    [23]

    程新兵, 刘金亮, 陈蒸, 殷毅, 冯加怀 2009 高电压技术 35 1689Google Scholar

    Cheng X B, Liu J L, Chen Z, Yin Y, Feng J H 2009 High Voltage Engineering 35 1689Google Scholar

    [24]

    Hagelaar G, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [25]

    Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar

    [26]

    Go D B, Pohlman D A 2010 J. Appl. Phys. 107 69Google Scholar

    [27]

    Fu Y, Krek J, Zhang P, Verboncoeur J P 2018 Plasma Sources Sci. Technol. 27 095014Google Scholar

    [28]

    Fu Y, Yang S, Zou X, Luo H, Wang X 2016 Phys. Plasmas 23 093509Google Scholar

  • [1] 舒盼盼, 赵朋程. 高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟. 物理学报, 2024, 73(23): 235101. doi: 10.7498/aps.73.20241177
    [2] 周鑫淼, 张博雅, 陈立, 李兴文. 金属微粒影响三电极气体火花开关击穿过程的仿真研究. 物理学报, 2024, 73(1): 015202. doi: 10.7498/aps.73.20231283
    [3] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [4] 赵明慧, 刘忠军, 姬帅, 刘晨, 敖庆波. 超临界氮气在单壁碳纳米管内吸附行为的GCMC模拟研究. 物理学报, 2022, 71(22): 220201. doi: 10.7498/aps.71.20220765
    [5] 黄梅婷, 姜银花, 陈钰琦, 李润华. 铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析. 物理学报, 2021, 70(10): 104206. doi: 10.7498/aps.70.20202018
    [6] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [7] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [8] 刘贝, 靳刚, 何军, 王军民. 基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源. 物理学报, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [9] 周前红, 董志伟, 简贵胄, 周海京. 氮气开关流柱形成过程的理论研究. 物理学报, 2015, 64(20): 205206. doi: 10.7498/aps.64.205206
    [10] 李洪伟, 周云龙, 王世勇, 孙斌. 小通道氮气-水两相流三谱切片波动特性及其流型表征. 物理学报, 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [11] 张宇, 葛昌纯, 沈卫平, 邱成杰. 氮气喷射成形FGH4095的组织特征. 物理学报, 2012, 61(19): 196101. doi: 10.7498/aps.61.196101
    [12] 梁卓, 罗海云, 王新新, 关志成, 王黎明. 气流对氮气介质阻挡放电气体温度及放电模式的影响. 物理学报, 2010, 59(12): 8739-8746. doi: 10.7498/aps.59.8739
    [13] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [14] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [15] 晁明举, 丁 佩, 张红瑞, 郭茂田, 梁二军. 氢气与氮气对硼碳氮纳米管生长的影响. 物理学报, 2004, 53(3): 936-941. doi: 10.7498/aps.53.936
    [16] 李灿华, 廖 源, 常 超, 王冠中, 方容川. 氮气氛下(100)织构金刚石薄膜的成核与生长研究. 物理学报, 2000, 49(9): 1756-1763. doi: 10.7498/aps.49.1756
    [17] 于 威, 张连珠, 李晓苇, 韩 理, 陈艳梅, 傅广生. 氮气辉光放电阴极鞘层重粒子输运过程研究. 物理学报, 1999, 48(9): 1701-1708. doi: 10.7498/aps.48.1701
    [18] 李正瀛. 电负性混合气体临界击穿场强与电子附着速率的探讨. 物理学报, 1990, 39(9): 1400-1406. doi: 10.7498/aps.39.1400
    [19] 易明銧. 非线性偏置条件下隧道二极管中的触发振荡. 物理学报, 1974, 23(5): 23-42. doi: 10.7498/aps.23.23
    [20] 葛庭燧. 钠汽遇氮气及氢气时在其主系线侧所生的散漫吸收光带. 物理学报, 1950, 7(6): 81-95. doi: 10.7498/aps.7.81-2
计量
  • 文章访问数:  6927
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-08-24
  • 上网日期:  2020-12-17
  • 刊出日期:  2021-01-05

/

返回文章
返回