搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮气开关流柱形成过程的理论研究

周前红 董志伟 简贵胄 周海京

引用本文:
Citation:

氮气开关流柱形成过程的理论研究

周前红, 董志伟, 简贵胄, 周海京

Theoretical study on the stream formation in the nitrogen switch

Zhou Qian-Hong, Dong Zhi-Wei, Jian Gui-Zhou, Zhou Hai-Jing
PDF
导出引用
  • 使用蒙特卡罗-粒子模拟方法对氮气开关中的流柱形成过程进行模拟, 并结合计算结果对其进行理论分析. 发现在流柱击穿发生前(即空间电荷场远小于本底电场), 等离子体的电离频率、电子平均能量及其迁移速度等都近似为常数, 因此可以解析求解电子数密度方程对等离子体的演化行为进行分析. 在击穿发生后, 随机碰撞过程会破坏初始等离子体区域分布的对称性, 并出现分叉的等离子体区域结构. 在放电过程中, 随着等离子体密度增加, 其内部基本保持电中性且电场不断减小, 靠近阴阳极两端电荷分离产生的净电荷密度不断增加, 场强也不断增加, 且靠近阳极端的电荷密度(绝对值)和场强都大于阴极端. 通过改变极板间电压发现, 平均电子能量随极板间场强增加而增加, 电子迁移速度随着场强近似线性增加, 电离频率随场强的变化快慢介于E4与E5之间.
    The stream formation in a 1-atm nitrogen gas switch is investigated by the two-dimensional and three-velocity (2D3V) particles through the cell-Monte Carlo collision (PIC-MCC) simulation and theoretical analysis. For simplicity, two parallel plane electrodes of 0.6 mm width are separated by a distance of 1.6 mm. It is found that the analytical solution of the electron density equation can be used to study the evolution of the plasma before the stream breaks down, for the ionization frequency, mean electron energy and electron drift velocity are all constant. After the breakdown of the stream, random collisions destroy the symmetry of the plasma region and cause plasma to branch. As plasma density increases, the electric field inside the plasma region decreases due to the shielding effect. However, charge densities at both ends of the plasma region increase and the density at the anode end is larger than that at the cathode end, for the plasma exponentially grows as electrons move from the cathode toward the anode. This causes the electric field at the end of plasma near the anode to be larger than that near the cathode. It is found that the electrons can achieve their stable mean energy in several picoseconds due to the high transfer frequency (1011-1012 Hz) of the electron energy in the nitrogen plasma. After the breakdown of the stream, the mean electron energy decreases due to the decrease of the electron energies inside the plasma. By increasing the electrode voltage, it is found that the mean electron energy increases, the electron drift velocity increases linearly, and the variation rate of ionization frequency with electric field is in a range between E4 and E5. Therefore, the time taking for breaking down the stream decreases with the increase of the electrode voltage.
    • 基金项目: 国家重点基础研究发展规划(批准号: 2013CB328904)、国家自然科学基金(批准号: 11105018, 11305015, 61201113, 11475155)和国防基础科研计划(批准号: B1520132018)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328904), the National Natural Science Foundation of China (Grant Nos. 11105018, 11305015, 61201113, 11475155), and the National Defense Basic Research Program, China (Grant No. B1520132018).
    [1]

    Mesyats G A 2005 Pulsed Power (New York: Kluwer Academic/Plenum Publishers)

    [2]

    Liu X S 2005 High Pulsed Power Technology (Beijing: National Defense Industry Press) (in Chinese) [刘锡三 2005 高功率脉冲技术 (北京:国防工业出版社)]

    [3]

    Benford J, Swegle J A, Schamiloglu E 2007 High Power Microwaves (New York: Taylor & Francis)

    [4]

    Luo H Y, Wang X X, Liang Z, Guang Z C, Wang L M 2010 Acta Phys. Sin. 59 8739 (in Chinese) [罗海云, 王新新, 梁卓, 关志成, 王黎明 2010 物理学报 59 8739]

    [5]

    Li G P, Wang X X, Yuan J S 2004 High Power Laser and Particle Beams 16 540 (in Chinese) [李桂萍, 王新新, 袁建生 2004 强激光与粒子束 16 540]

    [6]

    Yin Y, Liu J L, Zhong H H, Feng J H 2008 Plasma Sci. Tech. 10 379

    [7]

    Mao J B, Wang X, Tang D, L H Y, Li C X, Shao Y H, Qin L 2012 Rev. Sci. Instrum. 83 075112

    [8]

    Yeckel C, Curry R 2011 Rev. Sci. Instrum. 82 093112

    [9]

    Welch D R, Rose D V, Thoma C, Clark R E, Miller C, Madrid E A, Zimmerman W R, Rambo P K, Schwarz J, Savage M, Atherton B W 2013 Phys. Plasmas 20 083108

    [10]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)

    [11]

    Ebert U, Saarloos W V 1997 Phys. Rev. E 55 1530

    [12]

    Luque A, Ebert U 2011 Phys. Rev. E 84 04641

    [13]

    Verboncoeur J P 2005 Plasma Phys. Control Fusion 47 A231

    [14]

    Phelps A V, Pitchford L C 1985 Phys. Rev. A 31 2932

    [15]

    Pitchford L C, Oneil S V, Rumble Jr J R 1981 Phys. Rev. A 23 294

    [16]

    ItikawaY, Hayashi M, Ichimura A, Onda K, Sakimoto K, Takayanagi K 1986 J. Phys. Chem. Ref. Data 15 985

    [17]

    Birdsall C K, Langdon A B 1991 Plasma Physics via Computer Simulation (Bristol: IoP Publishing)

  • [1]

    Mesyats G A 2005 Pulsed Power (New York: Kluwer Academic/Plenum Publishers)

    [2]

    Liu X S 2005 High Pulsed Power Technology (Beijing: National Defense Industry Press) (in Chinese) [刘锡三 2005 高功率脉冲技术 (北京:国防工业出版社)]

    [3]

    Benford J, Swegle J A, Schamiloglu E 2007 High Power Microwaves (New York: Taylor & Francis)

    [4]

    Luo H Y, Wang X X, Liang Z, Guang Z C, Wang L M 2010 Acta Phys. Sin. 59 8739 (in Chinese) [罗海云, 王新新, 梁卓, 关志成, 王黎明 2010 物理学报 59 8739]

    [5]

    Li G P, Wang X X, Yuan J S 2004 High Power Laser and Particle Beams 16 540 (in Chinese) [李桂萍, 王新新, 袁建生 2004 强激光与粒子束 16 540]

    [6]

    Yin Y, Liu J L, Zhong H H, Feng J H 2008 Plasma Sci. Tech. 10 379

    [7]

    Mao J B, Wang X, Tang D, L H Y, Li C X, Shao Y H, Qin L 2012 Rev. Sci. Instrum. 83 075112

    [8]

    Yeckel C, Curry R 2011 Rev. Sci. Instrum. 82 093112

    [9]

    Welch D R, Rose D V, Thoma C, Clark R E, Miller C, Madrid E A, Zimmerman W R, Rambo P K, Schwarz J, Savage M, Atherton B W 2013 Phys. Plasmas 20 083108

    [10]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)

    [11]

    Ebert U, Saarloos W V 1997 Phys. Rev. E 55 1530

    [12]

    Luque A, Ebert U 2011 Phys. Rev. E 84 04641

    [13]

    Verboncoeur J P 2005 Plasma Phys. Control Fusion 47 A231

    [14]

    Phelps A V, Pitchford L C 1985 Phys. Rev. A 31 2932

    [15]

    Pitchford L C, Oneil S V, Rumble Jr J R 1981 Phys. Rev. A 23 294

    [16]

    ItikawaY, Hayashi M, Ichimura A, Onda K, Sakimoto K, Takayanagi K 1986 J. Phys. Chem. Ref. Data 15 985

    [17]

    Birdsall C K, Langdon A B 1991 Plasma Physics via Computer Simulation (Bristol: IoP Publishing)

  • [1] 周鑫淼, 张博雅, 陈立, 李兴文. 金属微粒影响三电极气体火花开关击穿过程的仿真研究. 物理学报, 2024, 73(1): 015202. doi: 10.7498/aps.73.20231283
    [2] 孙强, 周前红, 宋萌萌, 杨薇, 董烨. 氮气火花开关击穿机制的理论和数值研究. 物理学报, 2021, 70(1): 015202. doi: 10.7498/aps.70.20201206
    [3] 邓力, 李瑞, 王鑫, 付元光. 特征γ射线谱分析的蒙特卡罗模拟技术. 物理学报, 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [4] 许育培, 李树. 热辐射输运问题的高效蒙特卡罗模拟方法. 物理学报, 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [5] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [6] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟. 物理学报, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [7] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟. 物理学报, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [8] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子. 物理学报, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [9] 杨青, 曹曙阳, 刘十一. 基于浸入式边界方法的串联双矩形柱绕流数值模拟. 物理学报, 2014, 63(21): 214702. doi: 10.7498/aps.63.214702
    [10] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 释气对介质沿面闪络击穿影响的粒子模拟. 物理学报, 2014, 63(2): 027901. doi: 10.7498/aps.63.027901
    [12] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [13] 杨超, 龙继东, 王平, 廖方燕, 夏蒙重, 刘腊群. 潘宁源放电的全三维电磁粒子模拟/蒙特卡罗碰撞数值算法研究. 物理学报, 2013, 62(20): 205207. doi: 10.7498/aps.62.205207
    [14] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [15] 许莹, 李晋斌. 大粒子数二维硬核玻色子系统的量子蒙特卡罗模拟. 物理学报, 2012, 61(11): 110207. doi: 10.7498/aps.61.110207
    [16] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法. 物理学报, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [17] 鞠志萍, 曹午飞, 刘小伟. 质子散射角分布的蒙特卡罗模拟. 物理学报, 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [18] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [19] 施 卫, 贾婉丽, 纪卫莉, 刘 锴. 光电导开关工作模式的蒙特卡罗模拟. 物理学报, 2007, 56(11): 6334-6339. doi: 10.7498/aps.56.6334
    [20] 韩俊波, 王德真, 马腾才. 气体放电空心阴极鞘层氩离子的蒙特-卡罗模拟研究. 物理学报, 1996, 45(3): 428-435. doi: 10.7498/aps.45.428
计量
  • 文章访问数:  5023
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-12
  • 修回日期:  2015-06-03
  • 刊出日期:  2015-10-05

/

返回文章
返回