搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短脉冲强激光驱动磁重联过程的靶后电势分布特征

于家成 仲佳勇 安维明 平永利

引用本文:
Citation:

短脉冲强激光驱动磁重联过程的靶后电势分布特征

于家成, 仲佳勇, 安维明, 平永利

Potential distribution behind target in intense and short pulsed laser-driven magnetic reconnection

Yu Jia-Cheng, Zhong Jia-Yong, An Wei-Ming, Ping Yong-Li
PDF
HTML
导出引用
  • 超短超强激光因其极端的物理参数范围以及可用于研究相对论等离子体等特征, 成为当前激光驱动磁重联物理的研究热点. 通常采用两路激光与平面靶相互作用实现激光驱动磁重联, 然而在实验诊断中, 由于激光等离子体自身的复杂性导致很难辨别磁重联的物理特征. 本文对两路短脉冲激光驱动平面靶磁重联进行了数值模拟, 重点分析了靶后电势分布特征和磁重联之间的关系. 模拟结果显示, 靶后电势分布可以直接影响被加速离子在探测面上的空间分布, 因此可用来直接诊断短脉冲激光驱动磁重联实验.
    Recently, the short-pulse intense laser has become a common tool for studying the relativistic plasma with tremendous physical parameters. And the laser-driven magnetic reconnection is one of the hot topics and has received much attention. The laser-driven magnetic reconnection experiments are usually conducted by closely focusing two laser beams on a planar coil target. However, it is always hard to distinguish the physical property of magnetic reconnection from the complex background of laser-produced plasma. In this paper, we present the particle-in-cell simulation results of magnetic reconnection driven by two short-pulse lasers as well as a single laser pulse irradiating the solid planar target, and discuss the correlation between the potential distribution behind the target and the magnetic reconnection. When a single laser is used, the potential behind the target shows a double-peak distribution, which is in agreement with recent experimental results. When two lasers irradiate the target, the potential behind the target shows a three-peak distribution. The accumulated spatial distribution of plasma ions with fixed energy (4.5 and 6 MeV) at 3 μm behind the target shows several peaks, which is in agreement with the potential distribution when either a single laser or two lasers are used. In addition, after the laser pulse terminates, in the two-laser case there is extremely strong effect on the topological structure of the electric field compared with in the singlelaser case. When the magnetic reconnection happens (which can be identified through the reconnection electric field and the electron energy spectrum), the amplitude of the x component of the electric field has different evolution characteristics from the single laser case. The line outs of the y component of the electric field in two cases also have completely different shapes. In summary, the simulation results reveal that the potential distribution behind the target can directly affect the spatial distribution of the accelerated ions. This could be possibly used to identify the short pulse laser-driven magnetic reconnection in experiment.
      通信作者: 仲佳勇, jyzhong@bnu.edu.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(批准号: U1930108)、科学挑战计划(批准号: TZ2016005)、中国科学院战略重点研究计划(批准号: XDA25030700)和国家自然科学基金(批准号: 12075030)资助的课题
      Corresponding author: Zhong Jia-Yong, jyzhong@bnu.edu.cn
    • Funds: Project supported by the NSAF Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1930108), the Science Challenge Project, China (Grant No. TZ2016005), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDA25030700), and the National Natural Science Foundation of China (Grant No. 12075030)
    [1]

    Mei Z, Shen C, Wu N, Lin J, Murphy N A, Roussev I I 2012 Mon. Not. R. Astron. Soc. 425 2824Google Scholar

    [2]

    Uzdensky D A, Cerutti B, Bgelman M C 2011 Astrophys. J. Lett. 737 L40Google Scholar

    [3]

    Meng Y, Lin J, Zhang L, Reeves K K, Zhang Q S, Yuan F 2014 Astrophys. J. 785 62Google Scholar

    [4]

    Gregory C D, Howe J, Loupias B, Myers S, Notley M M, Sakawa Y, Oya A, Kodama R, Koenig M, Woolsey N C 2008 Astrophys. J. 676 420

    [5]

    Werner G R, Uzdensky D A, Begelman M C, Cerutti B, Nalewajko K 2018 Mon. Not. R. Astron. Soc. 473 4840Google Scholar

    [6]

    Nilson P M, Willingale L, Kaluza M C, et al. 2006 Phys. Rev. Lett. 97 255001Google Scholar

    [7]

    Willingale L, Nilson P M, Kaluza M C, et al. 2010 Phys. Plasmas 17 043104Google Scholar

    [8]

    Ryutov D D, Drake R P, Remington B A 2000 Astrophys. J. Suppl. Ser. 127 465Google Scholar

    [9]

    Zhong J Y, Li Y T, Wang X G, et al. 2010 Nat. Phys. 6 984Google Scholar

    [10]

    Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y 1994 Nature 371 495Google Scholar

    [11]

    Wagner U, Tatarakis M, Gopal A, et al. 2004 Phys. Rev. E 70 026401Google Scholar

    [12]

    Raymond A E, Dong C F, McKelvey A, et al. 2018 Phys. Rev. E 98 043207Google Scholar

    [13]

    Ping Y L, Zhong J Y, Sheng Z M, Wang X G, Liu B, Li Y T, Yan X Q, He X T, Zhang J, Zhao G 2014 Phys. Rev. E 89 031101Google Scholar

    [14]

    Gu Y J, Klimo O, Kumar D, Bulanov S V, Esirkepov T Z, Weber S, Korn G 2015 Phys. Plasmas 22 103113Google Scholar

    [15]

    Guo F, Li H, Daughton W, Liu Y H, 2014 Phys. Rev. Lett. 113 155005Google Scholar

    [16]

    Guo F, Li X, Daughton W, Kilian P, Li H, Liu Y H, Yan W C, Ma D 2019 Astrophys. J. Lett. 879 L23Google Scholar

    [17]

    Kagan D, Sironi L, Cerutti B, Giannios D 2015 Space Sci. Rev. 191 545Google Scholar

    [18]

    Arber T D, Bennett K, Brady C S, et al. 2015 Plasma Phys. Contr. F. 57 113001Google Scholar

    [19]

    Chen M, Shenga Z M, Zheng J, Ma Y Y, Bari M A, Li Y T, Zhang J 2006 Opt. Express 14 3093Google Scholar

    [20]

    Wilks S C, Langdon A B, Cowan T E, et al. 2001 Phys. Plasmas 8 542Google Scholar

    [21]

    Sentoku Y, d’Humières E, Romagnani L, Audebert P, Fuchs J 2011 Phys. Rev. Lett. 107 135005Google Scholar

  • 图 1  模拟区域内的激光和固体平面靶(黑色线框为模拟区域) (a) 单束激光; (b) 两束激光

    Fig. 1.  Lasers and solid planar target in the simulation box (black wireframe serves as the simulation box): (a) Single laser; (b) two lasers.

    图 2  (a) 靶前和(b) 靶后的鞘层电场Ex随时间的变化

    Fig. 2.  Sheath electric field Ex curves over time at (a) the front target and (b) the rear target.

    图 3  (a) 单束激光(蓝色)和两束激光(橙色)对时间取平均后得到的靶后电势分布; (b) 磁重联过程的示意图

    Fig. 3.  (a) Electric potential distribution averaged over certain time at the target back obtained from the data of single laser (blue line) and two lasers (orange line) respectively; (b) the illustration of magnetic reconnection process.

    图 4  靶后离子分布的统计结果(灰色针状图)和拟合结果(黄色曲线), 其中X-Y平面的图像是粒子密度(单位经过了临界密度归一化处理); 红色箭头表示激光入射位置 (a) 单束激光模拟中的靶后4.5 MeV离子的分布; (b) 两束激光模拟中的靶后6 MeV离子的分布

    Fig. 4.  Ion distribution at target back from the statistical results (gray needle figure) and the fitting result (yellow curve): (a) 4.5 MeV ion distribution behind the target from simulation of single laser; (b) 6 MeV ion distribution behind the target from simulation of two lasers. Particle number density figure plots on X-Y plane. Laser incident point is marked by red arrows

    图 5  靶后1 μm沿Y轴的电场强度ExEy, 时间分别为(a) 370, (b) 460, (c) 370和(d) 500 fs

    Fig. 5.  Electric field Ex and Ey over Y-axis at 1 μm behind the target for (a) 370, (b) 460, (c) 370, and (d) 500 fs.

    图 6  磁场Bz在(a) t = 370, (b) t = 380, (c) t = 390, (d) t = 400, (e) t = 410和(f) t = 460 fs的图像

    Fig. 6.  Figure of magnetic field Bz at (a) t = 370, (b) t = 380, (c) t = 390, (d) t = 400, (e) t = 410 and (f) t = 460 fs.

    图 7  靶后电子和离子的能谱, 统计选取的粒子及时间分别为(a) 电子300 fs、(b) 离子300 fs、(c) 电子400 fs、(d) 离子400 fs、(e) 电子500 fs和(f) 离子500 fs

    Fig. 7.  Electric and ionic energy spectra at (a) 300 fs (electron), (b) 300 fs (ion), (c) 400 fs (electron), (d) 400 fs (ion), (e) 500 fs (electron) and (f) 500 fs (ion).

  • [1]

    Mei Z, Shen C, Wu N, Lin J, Murphy N A, Roussev I I 2012 Mon. Not. R. Astron. Soc. 425 2824Google Scholar

    [2]

    Uzdensky D A, Cerutti B, Bgelman M C 2011 Astrophys. J. Lett. 737 L40Google Scholar

    [3]

    Meng Y, Lin J, Zhang L, Reeves K K, Zhang Q S, Yuan F 2014 Astrophys. J. 785 62Google Scholar

    [4]

    Gregory C D, Howe J, Loupias B, Myers S, Notley M M, Sakawa Y, Oya A, Kodama R, Koenig M, Woolsey N C 2008 Astrophys. J. 676 420

    [5]

    Werner G R, Uzdensky D A, Begelman M C, Cerutti B, Nalewajko K 2018 Mon. Not. R. Astron. Soc. 473 4840Google Scholar

    [6]

    Nilson P M, Willingale L, Kaluza M C, et al. 2006 Phys. Rev. Lett. 97 255001Google Scholar

    [7]

    Willingale L, Nilson P M, Kaluza M C, et al. 2010 Phys. Plasmas 17 043104Google Scholar

    [8]

    Ryutov D D, Drake R P, Remington B A 2000 Astrophys. J. Suppl. Ser. 127 465Google Scholar

    [9]

    Zhong J Y, Li Y T, Wang X G, et al. 2010 Nat. Phys. 6 984Google Scholar

    [10]

    Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y 1994 Nature 371 495Google Scholar

    [11]

    Wagner U, Tatarakis M, Gopal A, et al. 2004 Phys. Rev. E 70 026401Google Scholar

    [12]

    Raymond A E, Dong C F, McKelvey A, et al. 2018 Phys. Rev. E 98 043207Google Scholar

    [13]

    Ping Y L, Zhong J Y, Sheng Z M, Wang X G, Liu B, Li Y T, Yan X Q, He X T, Zhang J, Zhao G 2014 Phys. Rev. E 89 031101Google Scholar

    [14]

    Gu Y J, Klimo O, Kumar D, Bulanov S V, Esirkepov T Z, Weber S, Korn G 2015 Phys. Plasmas 22 103113Google Scholar

    [15]

    Guo F, Li H, Daughton W, Liu Y H, 2014 Phys. Rev. Lett. 113 155005Google Scholar

    [16]

    Guo F, Li X, Daughton W, Kilian P, Li H, Liu Y H, Yan W C, Ma D 2019 Astrophys. J. Lett. 879 L23Google Scholar

    [17]

    Kagan D, Sironi L, Cerutti B, Giannios D 2015 Space Sci. Rev. 191 545Google Scholar

    [18]

    Arber T D, Bennett K, Brady C S, et al. 2015 Plasma Phys. Contr. F. 57 113001Google Scholar

    [19]

    Chen M, Shenga Z M, Zheng J, Ma Y Y, Bari M A, Li Y T, Zhang J 2006 Opt. Express 14 3093Google Scholar

    [20]

    Wilks S C, Langdon A B, Cowan T E, et al. 2001 Phys. Plasmas 8 542Google Scholar

    [21]

    Sentoku Y, d’Humières E, Romagnani L, Audebert P, Fuchs J 2011 Phys. Rev. Lett. 107 135005Google Scholar

计量
  • 文章访问数:  3417
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-15
  • 修回日期:  2020-11-04
  • 上网日期:  2021-03-02
  • 刊出日期:  2021-03-20

/

返回文章
返回