搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于抽运-探测法的皮秒反斯托克斯拉曼频移器的理论研究

王聪 吕冬翔

引用本文:
Citation:

基于抽运-探测法的皮秒反斯托克斯拉曼频移器的理论研究

王聪, 吕冬翔

Theoretical study of picosecond anti-Stokes Raman frequency converter based on pump-probe method

Wang Cong, Lü Dong-Xiang
PDF
HTML
导出引用
  • 采用拉曼频移器在晶体介质中利用相干反斯托克斯散射效应可以获得超短脉冲(皮秒)反斯托克斯激光. 基于抽运-探测法的晶体拉曼频移器可以实现相干反斯托克斯散射的共线相互作用, 从而可以有效提高反斯托克斯光的转化效率. 本文在平面波近似下建立了基于抽运-探测法的皮秒反斯托克斯拉曼频移器的耦合波方程组, 引入归一化参量对方程组进行了归一化处理. 通过数值计算, 得到了描述皮秒反斯托克斯拉曼频移器运行的一组普适理论曲线, 分析了归一化拉曼增益系数G、归一化相位失配参数ΔK以及探测光脉冲能量占基频光总能量的比值rprobe三个变量对反斯托克斯拉曼频移器性能的影响, 确定了实现高效反斯托克斯转化时各归一化变量的合理取值. 采用实验数据对该理论模型的正确性进行了验证, 反斯托克斯转化效率的理论值与文献数据基本一致.
    Ultra-short pulse (picosecond) anti-Stokes laser can be obtained by using Raman frequency converter in a crystal medium by the coherent anti-Stokes Raman scattering effect. The crystalline Raman frequency converter based on the pump-probe method can realize the collinear interaction of coherent anti-Stokes Raman scattering, thus effectively improving the conversion efficiency of the anti-Stokes light. Theoretical simulation is an important means to study laser operation. Coupled wave equation is widely used to study the characteristics of Raman laser and anti-Stokes laser. Although the coupling wave theory of anti-Stokes Raman frequency shifter reported previously can reflect the operation law of the frequency shifter, the optimization of the frequency shifter and the influence of the frequency shifter parameters on the output characteristics of anti-Stokes laser have not been reported so far. In this paper, the picosecond anti-Stokes Raman frequency converter based on the pump-probe method is studied theoretically. Considering the generation of the first Stokes light in the probe channel and the second Stokes light in the pump channel, the coupled wave equation of the collinear picosecond anti-Stokes Raman frequency converter is established under the plane wave approximation. Without loss of generality, four dimensionless comprehensive parameters are introduced to normalize the equations. A set of universal theoretical curves describing the operation of the Raman frequency converter is obtained. The numerical solutions of the equations show that the performance of the Raman frequency converter mainly depends on three parameters: the normalized phase mismatch parameter ΔK, the normalized Raman gain coefficient G, and the energy ratio of the probe light to the fundamental light rprobe. The reasonable values of normalized variables are determined when the high efficiency anti-Stokes conversion is realized. Experimental data are used to verify the correctness of the theoretical model. The theoretical value of the anti-Stokes conversion efficiency is basically consistent with the literature data. The normalized coupled wave theory proposed in this paper is helpful in understanding the operation law of the picosecond anti-Stokes Raman frequency shifter, and has guiding significance for the design of the frequency converter.
      通信作者: 王聪, wangc.sd@163.com
    • 基金项目: 国家自然科学基金(批准号: 11504268)和天津市教委科研计划(批准号: 2014KJ240)资助的课题
      Corresponding author: Wang Cong, wangc.sd@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504268) and the Scientific Research Program of Tianjin Municipal Education Commission, China (Grant No. 2017KJ240)
    [1]

    孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 物理学报 69 124201Google Scholar

    Sun Y L, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar

    [2]

    张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 物理学报 67 024206Google Scholar

    Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar

    [3]

    Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar

    [4]

    Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar

    [5]

    Wei L J, Chen M T, Zhu S Q, Dai S B, Yin H, Chen Z Q 2018 Laser Phys. Lett. 15 125001Google Scholar

    [6]

    Duan Y M, Sun Y L, Zhu H Y, Mao T W, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar

    [7]

    Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T, Zhang G Z, Wu L, Yao J Q 2018 Appl. Opt. 57 3154Google Scholar

    [8]

    Ding S H, Zhang X Y, Wang Q P, Jia P, Zhang C, Liu B 2006 Opt. Commun. 267 480Google Scholar

    [9]

    Smetanin S N, Doroshenko M E, Ivleva L I, Jelínek M, V. Kubeček, Jelínková H 2014 Appl. Phys. B 117 225Google Scholar

    [10]

    Ding S H, Zhang X Y, Wang Q P, Zhang J, Wang S M, Liu Y R, Zhang X H 2007 J. Phys. D 40 2736

    [11]

    Smetanin S N, Jelínek M, Tereshchenko D P, Kubeček V 2018 Opt. Express 26 22637Google Scholar

    [12]

    Smetanin S N, Jelínek M, Kubeček V 2017 Appl. Phys. B 123 203

    [13]

    Vermeulen N, Debaes C, Fotiadi A A, Panajotov K, Thienpont H 2006 IEEE J. Quantum Electron. 42 1144Google Scholar

    [14]

    Grasiuk A Z, Kurbasov S V, Losev L L 2004 Opt. Commun. 240 239Google Scholar

    [15]

    Mildren R P, Coutts D W, Spence D J 2009 Opt. Express 17 810Google Scholar

    [16]

    Wang C, Zhang X Y, Wang Q P, Cong Z H, Liu Z J, Wei W, Wang W T, Wu Z G, Zhang Y G, Li L, Chen X H, Li P, Zhang H J, Ding S H 2013 Opt. Express 21 26014Google Scholar

    [17]

    Wang C, Cong Z H, Qin Z G, Zhang X Y, Wei W, Wang W T, Zhang Y G, Zhang H J, Yu H H 2014 Opt. Commun. 322 44Google Scholar

    [18]

    Wei W, Zhang X Y, Wang Q P, Wang C, Cong Z H, Chen X H, Liu Z J, Wang W T, Wu Z G, Ding S H, Tu C Y, Li Y F, Cheng W Y 2014 Appl. Phys. B 116 561

    [19]

    Smetanin S N, Jelínek M, Tereshchenko D P, Shukshin V E, Konyukhov M V, Papashvili A G, Voronina I S, Ivleva L I, Kubeček V 2020 Opt. Express 28 22919Google Scholar

    [20]

    Shen Y R, Bloembergen N 1965 Phys. Rev. 137 1787Google Scholar

  • 图 1  抽运通道和探测通道中的拉曼散射能级图 (a) 抽运通道的SSRS能级图; (b) 探测通道的CARS能级图; (c) 探测通道的SSRS能级图

    Fig. 1.  Raman scattering energy levels in pump and probe channels: (a) SSRS in pump channel; (b) CARS in probe channel; (c) SSRS in probe channel.

    图 2  G = 90, Wp = 0.2, rprobe取不同值时(a) ηa, (b) η1s和(c) η2s随ΔK的变化

    Fig. 2.  (a) ηa, (b) η1s and (c) η2s versus ΔK for different rprobe with G = 90 and Wp = 0.2.

    图 3  rprobe = 0.3, G = 90, Wp = 0.2时, 抽运光、探测光、一阶斯托克斯光和反斯托克斯光归一化光强随ζ的空间演化 (a) |ΔK| = 0; (b) |ΔK| = 4; (c) |ΔK| = 8

    Fig. 3.  Plots of the spatial evolution of pump, probe, first Stokes, and anti-Stokes normalized intensities with rprobe = 0.3, G = 90 and Wp = 0.2: (a) |ΔK| = 0; (b) |ΔK| = 4; and (c) |ΔK| = 8.

    图 4  rprobe = 0.39, G = 90, Wp = 0.2时, 抽运光、探测光、一阶斯托克斯光和反斯托克斯光归一化光强随ζ的空间演化 (a) |ΔK| = 0; (b) |ΔK| = 4; (c) |ΔK| = 8

    Fig. 4.  Plots of the spatial evolution of pump, probe, first Stokes, and anti-Stokes normalized intensities with rprobe = 0.39, G = 90 and Wp = 0.2: (a) |ΔK| = 0; (b) |ΔK| = 4; and (c) |ΔK| = 8.

    图 5  G = 90, |ΔK| = 0, Wp = 0.2时抽运光、探测光、一阶斯托克斯光、二阶斯托克斯光和反斯托克斯光的脉冲形状 (a) rprobe = 0.3; (b) rprobe = 0.39

    Fig. 5.  Temporal profiles of the pump, probe, first Stokes, second Stokes and anti-Stokes pulses with G = 90, |ΔK| = 0 and Wp = 0.2: (a) rprobe = 0.3; (b) rprobe = 0.39.

    图 6  K| = 0, Wp = 0.2, rprobe取不同值时(a) ηa, (b) η1 s和(c) η2 sG的变化

    Fig. 6.  (a) ηa, (b) η1s and (c) η2s versus G for different rprobe with |ΔK| = 0 and Wp = 0.2.

    图 7  K| = 0, Wp = 0.2时, roptηamaxG的变化

    Fig. 7.  ropt and ηamax versus G with |ΔK| = 0 and Wp = 0.2

    图 8  K| = 0, Wp = 0.2时抽运光、探测光、一阶斯托克斯光、二阶斯托克斯光和反斯托克斯光的脉冲形状 (a) ropt = 0.270, G = 60; (b) ropt = 0.373, G = 110; (c) ropt = 0.414, G = 160

    Fig. 8.  Temporal profiles of the pump, probe, first Stokes, second Stokes, and anti-Stokes pulses with |ΔK |= 0 and Wp = 0.2: (a) ropt = 0.270, G = 60; (b) ropt = 0.373, G = 110; (c) ropt = 0.414, G = 160.

    图 9  K| = 0, Wp = 0.2时, Goptηamaxrprobe的变化

    Fig. 9.  Gopt and ηamax versus rprobe with |ΔK| = 0 and Wp = 0.2

    表 1  参考文献[12]中的参数

    Table 1.  Parameters in Ref. [12].

    参数参数
    νa/νp1.06Ap/cm22.83 × 10–4
    ν1s/νp0.94lR/cm3.2
    ν2s/νp0.88g/(cm·GW–1)13
    wp/ps20Δk0
    下载: 导出CSV

    表 2  不同情况下反斯托克斯转化效率的理论值与实验数据的对比结果

    Table 2.  Comparisons of theoretical and experimental results of anti-Stokes conversion efficiency under different conditions.

    抽运脉冲
    能量/μJ
    探测脉冲
    能量/μJ
    Grprobe实验
    值/%
    理论
    值/%
    30252060.452.802.54
    3021180.0631.881.86
    26121400.323.504.13
    下载: 导出CSV

    表 3  高斯近似时反斯托克斯转化效率的理论值

    Table 3.  Theoretical values of anti-Stokes conversion efficiency for Gaussian approximation.

    抽运脉冲能量/μJ探测脉冲能量/μJ$ \eta _{\rm{a}}^{\rm{g}}$/%
    30252.63
    3021.91
    26124.09
    下载: 导出CSV
  • [1]

    孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 物理学报 69 124201Google Scholar

    Sun Y L, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar

    [2]

    张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 物理学报 67 024206Google Scholar

    Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar

    [3]

    Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar

    [4]

    Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar

    [5]

    Wei L J, Chen M T, Zhu S Q, Dai S B, Yin H, Chen Z Q 2018 Laser Phys. Lett. 15 125001Google Scholar

    [6]

    Duan Y M, Sun Y L, Zhu H Y, Mao T W, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar

    [7]

    Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T, Zhang G Z, Wu L, Yao J Q 2018 Appl. Opt. 57 3154Google Scholar

    [8]

    Ding S H, Zhang X Y, Wang Q P, Jia P, Zhang C, Liu B 2006 Opt. Commun. 267 480Google Scholar

    [9]

    Smetanin S N, Doroshenko M E, Ivleva L I, Jelínek M, V. Kubeček, Jelínková H 2014 Appl. Phys. B 117 225Google Scholar

    [10]

    Ding S H, Zhang X Y, Wang Q P, Zhang J, Wang S M, Liu Y R, Zhang X H 2007 J. Phys. D 40 2736

    [11]

    Smetanin S N, Jelínek M, Tereshchenko D P, Kubeček V 2018 Opt. Express 26 22637Google Scholar

    [12]

    Smetanin S N, Jelínek M, Kubeček V 2017 Appl. Phys. B 123 203

    [13]

    Vermeulen N, Debaes C, Fotiadi A A, Panajotov K, Thienpont H 2006 IEEE J. Quantum Electron. 42 1144Google Scholar

    [14]

    Grasiuk A Z, Kurbasov S V, Losev L L 2004 Opt. Commun. 240 239Google Scholar

    [15]

    Mildren R P, Coutts D W, Spence D J 2009 Opt. Express 17 810Google Scholar

    [16]

    Wang C, Zhang X Y, Wang Q P, Cong Z H, Liu Z J, Wei W, Wang W T, Wu Z G, Zhang Y G, Li L, Chen X H, Li P, Zhang H J, Ding S H 2013 Opt. Express 21 26014Google Scholar

    [17]

    Wang C, Cong Z H, Qin Z G, Zhang X Y, Wei W, Wang W T, Zhang Y G, Zhang H J, Yu H H 2014 Opt. Commun. 322 44Google Scholar

    [18]

    Wei W, Zhang X Y, Wang Q P, Wang C, Cong Z H, Chen X H, Liu Z J, Wang W T, Wu Z G, Ding S H, Tu C Y, Li Y F, Cheng W Y 2014 Appl. Phys. B 116 561

    [19]

    Smetanin S N, Jelínek M, Tereshchenko D P, Shukshin V E, Konyukhov M V, Papashvili A G, Voronina I S, Ivleva L I, Kubeček V 2020 Opt. Express 28 22919Google Scholar

    [20]

    Shen Y R, Bloembergen N 1965 Phys. Rev. 137 1787Google Scholar

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量. 物理学报, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量. 物理学报, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [3] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [4] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱. 物理学报, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [5] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [6] 郑娟娟, 姚保利, 邵晓鹏. 基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制. 物理学报, 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [7] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究. 物理学报, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [8] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像. 物理学报, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [9] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析. 物理学报, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [10] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [11] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究. 物理学报, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [12] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析. 物理学报, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [13] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究. 物理学报, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [14] 汪 莎, 陈 军, 童立新, 高清松, 刘 崇, 唐 淳. 熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究. 物理学报, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [15] 王峨锋, 李宏福, 李 浩, 喻 胜, 牛新建, 刘迎辉. 螺旋波纹波导研究. 物理学报, 2005, 54(11): 5339-5343. doi: 10.7498/aps.54.5339
    [16] 李文博, 李克轩. 开普勒径向方程的赝角动量解法及其归一化本征态和相干态. 物理学报, 2004, 53(9): 2964-2969. doi: 10.7498/aps.53.2964
    [17] 牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文. 8mm高功率过模弯曲圆波导TE01—TM11模式变换. 物理学报, 2002, 51(10): 2291-2295. doi: 10.7498/aps.51.2291
    [18] 张瑞华, 米辛, 周海天, 姜谦, 叶佩弦. 非相干光时延四波混频的多能级理论——非均匀加宽情形. 物理学报, 1991, 40(3): 414-423. doi: 10.7498/aps.40.414
    [19] 丁宏玉, 吴百诗, 殷大钧, 李锦泉. 简并四波混频的速率方程理论. 物理学报, 1988, 37(3): 408-415. doi: 10.7498/aps.37.408
    [20] 范俊颖, 吴存恺, 王志英. 共振吸收增强的四波混频理论. 物理学报, 1980, 29(7): 897-904. doi: 10.7498/aps.29.897
计量
  • 文章访问数:  4425
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 修回日期:  2021-02-17
  • 上网日期:  2021-04-19
  • 刊出日期:  2021-05-05

/

返回文章
返回