搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形磁场金属等离子体源冷却流场的数值模拟与优化

陈国华 石科军 储进科 吴昊 周池楼 肖舒

引用本文:
Citation:

环形磁场金属等离子体源冷却流场的数值模拟与优化

陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒

Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field

Chen Guo-Hua, Shi Ke-Jun, Chu Jin-Ke, Wu Hao, Zhou Chi-Lou, Xiao Shu
PDF
HTML
导出引用
  • 环形磁场金属等离子体源作为一种全新的等离子体源结构, 可用于产生高度离化、无大颗粒、高密度的离子束流, 但传统流道结构不能保证其高效、均匀散热, 大功率工作时可能引起密封胶圈的烧蚀失效, 需对其冷却流场进行优化设计. 利用Solidworks Flow Simulation软件对等离子体源冷却流道进行模拟, 分析出入水孔分布角度、孔数、孔径以及入水孔高度对冷却效果的影响规律, 并对流道结构参数进行优化. 结果表明, 增大水孔的周向分布范围, 有利于提高散热的均匀性; 入水孔设置在结构上层有利于减少冷却水的温度分层现象, 使铜套和密封胶圈都处于较好的冷却状态; 适当减小孔径有利于增大冷却水射流速度, 增大湍流程度强化传热, 提高换热效率. 优化后的流场结构可以提高冷却水的利用率, 在相同流量条件下获得更好的冷却效果, 改善等离子体源的放电稳定性, 为环形磁场金属等离子体源的冷却结构设计提供理论依据.
    In order to solve the problems of unstable discharge, low deposition rate and large difference in ionization rate between different targets in high power impulse magnetron sputtering, a novel cylindrical cathode with annular magnetic field based on hollow cathode effect is proposed, which can be used to produce ion beam with high ionization rate, high plasma density and no large particles. However, the traditional channel structure could not guarantee its high efficiency and uniform heat dissipation. The sealing ring may be damaged by ablation due to high power density, which restricts the further improvement of power density. Therefore, it is necessary to optimize the design of the channel structure. SolidWorks flow simulation software is used to simulate the cooling channel of plasma source. The influence of water hole structure parameters on cooling effect is analyzed, including distribution angle, hole number, diameter and inlet hole height. And the channel structure parameters are optimized. The results show that the increasing of the circumferential distribution range of the water hole is beneficial to the uniformity of heat dissipation, ensuring a large temperature difference between cooling water and copper sleeve, and strengthening heat exchange. The water inlet hole set in the upper layer of the structure is conducive to alleviating the temperature stratification phenomenon of the cooling water, so that the copper sleeve and sealing ring are in good cooling condition. Appropriately reducing the aperture is beneficial to increasing the cooling water jet velocity, enhancing the jet impact effect, and then increasing the turbulence degree, strengthening the heat transfer and improving the heat transfer efficiency. By systematically studying the influencing factors, the optimized cooling flow field structure of cylindrical cathode with an annular magnetic field is obtained. The distribution angle is 30°, the number of holes is 6, the aperture is 4 mm, and the height of water inlet hole is 36 mm. The optimized channel structure can improve the utilization rate of cooling water, obtaining better cooling effect at the same flow rate, and improving the discharge stability of the plasma source, which provides a basis for designing the cooling structure of the cylindrical cathode with annular magnetic field.
      通信作者: 吴昊, wuhao@scut.edu.cn ; 肖舒, xiaos@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52005187, 51705157, 51905177)、广东省基础与应用基础研究基金(批准号: 2019A1515110065)、中国博士后科学基金(批准号: 2019M662909)和中央高校基本科研业务费专项资金(批准号: 2019MS063)资助的课题
      Corresponding author: Wu Hao, wuhao@scut.edu.cn ; Xiao Shu, xiaos@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52005187, 51705157, 51905177), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2019A1515110065), the China Postdoctoral Science Foundation (Grant No. 2019M662909), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2019MS063)
    [1]

    D'Avico L, Beltrami R, Lecis N, Trasatti S P 2019 Coatings 9 7

    [2]

    Maksakova O, Simoẽs S, Pogrebnjak A, Bondar O, Kravchenko Y O, Koltunowicz T, Shaimardanov Z K 2019 J. Alloys Compd. 776 679Google Scholar

    [3]

    Vu T D, Chen Z, Zeng X, Jiang M, Liu S, Gao Y, Long Y 2019 J. Alloys Compd. C 7 2121

    [4]

    Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [5]

    吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 物理学报 63 175201Google Scholar

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201Google Scholar

    [6]

    吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [7]

    Biswas B, Purandare Y, Sugumaran A, Khan I, Hovsepian P E 2018 Surf. Coat. Technol. 336 84Google Scholar

    [8]

    Biswas B, Purandare Y, Khan I, Hovsepian P E 2018 Surf. Coat. Technol. 344 383Google Scholar

    [9]

    Vitelaru C, Aijaz A, Parau A C, Kiss A E, Sobetkii A, Kubart T 2018 J. Phys. D: Appl. Phys. 51 165201Google Scholar

    [10]

    Meier S M, Hecimovic A, Tsankov T V, Luggenhölscher D, Czarnetzki U 2018 Plasma Sources Sci. Technol. 27 035006Google Scholar

    [11]

    Diyatmika W, Liang F K, Lou B S, Lu J H, Sun D E, Lee J W 2018 Surf. Coat. Technol. 352 680Google Scholar

    [12]

    Ganesan R, Akhavan B, Dong X, McKenzie D, Bilek M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [13]

    Rudolph M, Brenning N, Raadu M A, Hajihoseini H, Gudmundsson J T, Anders A, Lundin D 2020 Plasma Sources Sci. Technol. 29 05LT01Google Scholar

    [14]

    吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279Google Scholar

    [15]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [16]

    崔岁寒, 吴忠振, , 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋 2017 物理学报 66 095203Google Scholar

    Cui S H, Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Chu P K, Tan W C, Pan F 2017 Acta Phys. Sin. 66 095203Google Scholar

    [17]

    崔岁寒, 吴忠振, , 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [18]

    Cui S H, Wu Z Z, Xiao S, Zheng B C, Chen L, Li T J, Fu R K Y, Chu P K, Tian X B, Tan W C Fang D N, Pan F 2020 J. Appl. Phys. 127 023301Google Scholar

    [19]

    Marin F, de Miranda J R, de Souza A F 2018 Polym. Eng. Sci. 58 552Google Scholar

    [20]

    Liu X, Xu X, Liu C, Bai W, Dang C 2018 Energy 147 1Google Scholar

    [21]

    曹珍恩, 巩春志, 田修波, 杨士勤 2008 真空 2 70Google Scholar

    Cao Z E, Gong C Z, Tian X B, Yang S Q 2008 Vacuum 2 70Google Scholar

    [22]

    Bräuer G, Szyszka B, Vergöhl M, Bandorf R 2010 Vacuum 84 1354Google Scholar

  • 图 1  环形磁场金属等离子体源简化模型

    Fig. 1.  Simplified model of cylindrical cathode with annular magnetic field.

    图 2  计算模型的网格划分

    Fig. 2.  Grid of computing mode.

    图 3  不同功率下等离子体源的放电情况

    Fig. 3.  Discharge of plasma source at different power.

    图 4  出口冷却水温升的实验值与模拟值对比

    Fig. 4.  Comparison of experimental and simulated water temperature rise.

    图 5  不同孔分布角度的出水孔高度(40 mm)冷却水温度切面

    Fig. 5.  Water temperature section with outlet height (40 mm) of different hole distribution angles.

    图 6  不同出入水孔数量的铜套表面温度

    Fig. 6.  Surface temperature of copper sleeve with different number of holes.

    图 7  不同水压下出入水孔孔径对胶圈温度的影响

    Fig. 7.  Influence of hole diameter on apron temperature under different water pressure.

    图 8  出入水孔孔径对入水孔射流速度的影响

    Fig. 8.  Influence of hole diameter on water jet velocity at water inlet.

    图 9  入水孔高度对冷却效果的影响 (a)胶圈温度; (b)出水孔侧铜套温度

    Fig. 9.  Influence of hole height on cooling effect: (a) Apron temperature; (b) copper sleeve temperature of outlet side.

    图 10  入水孔高度分别为6与36 mm时的冷却水温度云图

    Fig. 10.  Temperature nephogram of cooling water when h is 6 and 36 mm.

    表 1  模型中各零部件材料物性参数

    Table 1.  Material property parameters of each component in the model.

    材料密度ρ/kg·m–3比热J/kg·K热导率W/m·K部件
    纯铁787444780磁短路环
    紫铜8960384401铜套、铜靶
    软钢787047251.9上板、上盖板、
    周向套、底板
    钕铁硼740050232.2环形磁铁
    氟橡胶125017900.2胶圈
    100041820.58冷却水
    下载: 导出CSV

    表 2  不同出入水孔分布角度、孔数时的胶圈最高温度 (℃)

    Table 2.  Maximum temperature of aprons with different distribution angles and number of holes (℃).

    角度/(°)51015202530
    数量/个
    160.4860.4860.4860.4860.4860.48
    259.8359.5159.9359.2058.2759.63
    357.4258.7957.7557.0457.6255.84
    457.4057.1855.5253.9553.4053.24
    557.1556.1353.4049.7551.2650.47
    655.9354.8253.0752.7549.8746.50
    下载: 导出CSV
  • [1]

    D'Avico L, Beltrami R, Lecis N, Trasatti S P 2019 Coatings 9 7

    [2]

    Maksakova O, Simoẽs S, Pogrebnjak A, Bondar O, Kravchenko Y O, Koltunowicz T, Shaimardanov Z K 2019 J. Alloys Compd. 776 679Google Scholar

    [3]

    Vu T D, Chen Z, Zeng X, Jiang M, Liu S, Gao Y, Long Y 2019 J. Alloys Compd. C 7 2121

    [4]

    Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [5]

    吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 物理学报 63 175201Google Scholar

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201Google Scholar

    [6]

    吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [7]

    Biswas B, Purandare Y, Sugumaran A, Khan I, Hovsepian P E 2018 Surf. Coat. Technol. 336 84Google Scholar

    [8]

    Biswas B, Purandare Y, Khan I, Hovsepian P E 2018 Surf. Coat. Technol. 344 383Google Scholar

    [9]

    Vitelaru C, Aijaz A, Parau A C, Kiss A E, Sobetkii A, Kubart T 2018 J. Phys. D: Appl. Phys. 51 165201Google Scholar

    [10]

    Meier S M, Hecimovic A, Tsankov T V, Luggenhölscher D, Czarnetzki U 2018 Plasma Sources Sci. Technol. 27 035006Google Scholar

    [11]

    Diyatmika W, Liang F K, Lou B S, Lu J H, Sun D E, Lee J W 2018 Surf. Coat. Technol. 352 680Google Scholar

    [12]

    Ganesan R, Akhavan B, Dong X, McKenzie D, Bilek M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [13]

    Rudolph M, Brenning N, Raadu M A, Hajihoseini H, Gudmundsson J T, Anders A, Lundin D 2020 Plasma Sources Sci. Technol. 29 05LT01Google Scholar

    [14]

    吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279Google Scholar

    [15]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [16]

    崔岁寒, 吴忠振, , 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋 2017 物理学报 66 095203Google Scholar

    Cui S H, Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Chu P K, Tan W C, Pan F 2017 Acta Phys. Sin. 66 095203Google Scholar

    [17]

    崔岁寒, 吴忠振, , 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [18]

    Cui S H, Wu Z Z, Xiao S, Zheng B C, Chen L, Li T J, Fu R K Y, Chu P K, Tian X B, Tan W C Fang D N, Pan F 2020 J. Appl. Phys. 127 023301Google Scholar

    [19]

    Marin F, de Miranda J R, de Souza A F 2018 Polym. Eng. Sci. 58 552Google Scholar

    [20]

    Liu X, Xu X, Liu C, Bai W, Dang C 2018 Energy 147 1Google Scholar

    [21]

    曹珍恩, 巩春志, 田修波, 杨士勤 2008 真空 2 70Google Scholar

    Cao Z E, Gong C Z, Tian X B, Yang S Q 2008 Vacuum 2 70Google Scholar

    [22]

    Bräuer G, Szyszka B, Vergöhl M, Bandorf R 2010 Vacuum 84 1354Google Scholar

  • [1] 宋利伟, 石颖, 陈树民, 柯璇, 侯晓慧, 刘志奇. 地下黏弹性介质波动方程及波场数值模拟. 物理学报, 2021, 70(14): 149102. doi: 10.7498/aps.70.20210005
    [2] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [3] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [4] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [5] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [6] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [7] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [8] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法. 物理学报, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [9] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [10] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [11] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟. 物理学报, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [12] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [13] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [14] 陈华俊, 米贤武. 强耦合光机械腔中的简正模式分裂和冷却. 物理学报, 2011, 60(12): 124206. doi: 10.7498/aps.60.124206
    [15] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟. 物理学报, 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [16] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [17] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [18] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟. 物理学报, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [19] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟. 物理学报, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  3627
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2020-10-26
  • 上网日期:  2021-03-19
  • 刊出日期:  2021-04-05

/

返回文章
返回