搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Be+离子和Li原子极化率和超极化率的理论研究

王婷 蒋丽 王霞 董晨钟 武中文 蒋军

引用本文:
Citation:

Be+离子和Li原子极化率和超极化率的理论研究

王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军

Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms

Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun
PDF
HTML
导出引用
  • 利用相对论模型势方法计算了Be+离子和Li原子的波函数、能级和振子强度, 进一步得到了基态的电偶极极化率和超极化率, 并详细地分析了不同中间态对基态超极化率的贡献. 对于Be+离子, 电偶极极化率和超极化率与已有的理论结果符合得非常好. 对于Li原子, 电偶极极化率与已有的理论结果符合得很好, 但是不同理论方法计算给出的超极化率差别非常大, 最大的差别超过了一个数量级. 通过分析不同中间态对Li原子基态超极化率的贡献, 解释了不同理论结果之间有较大差异的原因.
    The wave functions, energy levels, and oscillator strengths of Be+ ions and Li atoms are calculated by using a relativistic potential model, which is named the relativistic configuration interaction plus core polarization method (RCICP). The calculated energy levels in this work are in good agreement with experimental levels tabulated in NIST Atomic Spectra Database, and the difference appears in the sixth digit after the decimal point. The present oscillator strengths are in good agreement with the existing theoretical and experimental results. By means of these energy levels and oscillator strengths, the electric-dipole static polarizabilities and hyperpolarizabilities of the ground states are determined. The contributions of different intermediate states to the hyperpolarizabilities of the ground state are further discussed. For Be+ ions, the present electric-dipole polarizability and hyperpolarizability are in good agreement with the results calculated by Hartree-Fock plus core polarization method, the finite field method and relativistic many-body method. The largest contribution to the hyperpolarizability is the term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$. For Li atoms, the present electric-dipole polarizability is in good agreement with the available theoretical and experimental results. However, the present hyperpolarizability is different from the other theoretical results significantly. Moreover, the hyperpolarizabilities calculated by different theoretical methods are quite different. The biggest difference is more than one order of magnitude. In order to explain the reason for these differences, we analyze the contributions of different intermediate states to the hyperpolarizability in detail. It is found that the sum of the contributions of the 2s→npj$\left( {n \geqslant 3} \right)$ and npjndj$\left( {n \geqslant 3} \right)$ to hyperpolarizability is approximately equal to that term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$. The total hyperpolarizability, which is the difference between the sum of the contributions of the 2snpj$\left( {n \geqslant 3} \right)$ and npjndj$\left( {n \geqslant 3} \right)$ to hyperpolarizability and $\alpha _{\text{0}}^{\text{1}}{\beta _0}$, is relatively small. Consequently, this difference magnifies the calculated error. If the uncertainties of the transition matrix elements are less than 0.1%, the uncertainty of hyperpolarizability is more than 100%. Therefore, the differences of hyperpolarizabilities for the ground state of Li atoms, calculated by various theoretical methods, are more than 100% or one order of magnitude.
      通信作者: 蒋军, phyjiang@yeah.net
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)和国家自然科学基金(批准号: 11774292, 11804280, 11864036)资助的课题
      Corresponding author: Jiang Jun, phyjiang@yeah.net
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant Nos. 11774292, 11804280, 11864036)
    [1]

    Kassimi E B, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [2]

    Dür W, Briegel H J 2002 Phys. Rev. Lett. 90 067901Google Scholar

    [3]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2005 Phys. Rev. A 72 052330Google Scholar

    [4]

    Jiang L, Taylor J M, Sørensen A S, Lukin M D 2007 Phys. Rev. A 76 062323Google Scholar

    [5]

    Gorshkov A V, Rey A M, Daley A J, Boyd M M, Ye J, Zoller P, Lukin M D 2009 Phys. Rev. Lett. 102 110503Google Scholar

    [6]

    Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639Google Scholar

    [7]

    Neuhauser W, Hohenstatt M, Toschek P E, Dehmelt H 1978 Phys. Rev. Lett. 41 233Google Scholar

    [8]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [9]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [10]

    Pihan-Le Bars H, Guerlin C, Bailey Q G, Bize S, Wolf P 2017 arXiv: 1701.06902[gr-qc]

    [11]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [12]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [13]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [16]

    Brusch A, Le T R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [17]

    Barbe Z W, Lemke J E, Polt N D 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [18]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [19]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [20]

    Katori H, Takamoto M, Pal'Chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [21]

    Porsev S G, Safronova M S, Safronova U I, Kozlov M G 2018 Phys. Rev. Lett. 120 063204Google Scholar

    [22]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [23]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [24]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [25]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [26]

    Fuentealba P, Reyes O 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2245Google Scholar

    [27]

    Jiang J, Mitroy J, Cheng Y J, Bromley M W J 2016 Phys. Rev. A 94 062514Google Scholar

    [28]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [29]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [30]

    Yin D, Zhang Y H, Li C B, Gao K L, Shi T Y 2016 Sci. China Phys. Mech. 59 690011Google Scholar

    [31]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [32]

    Stiehler J, Hinze J 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4055Google Scholar

    [33]

    Pipin J, Bishop D M 1992 Phys. Rev. A 45 2736Google Scholar

    [34]

    Maroulis G, Thakkar A J 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2439Google Scholar

    [35]

    Nicolaides C A, Themelis S I 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2217Google Scholar

    [36]

    Kaneko S 1977 J. Phys. B: At. Mol. Opt. Phys. 10 3347Google Scholar

    [37]

    Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512Google Scholar

    [38]

    Bhatia A K, Drachman R J 1997 Can. J. Phys. 75 11Google Scholar

    [39]

    Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375Google Scholar

    [40]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [41]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [42]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team https://physics.nist.gov/asd [2019-9-10]

    [43]

    Adelman S A, Szabo A 1973 J. Chem. Phys. 58 687Google Scholar

    [44]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [45]

    Patil S H, Tang K T 1997 J. Chem. Phys. 106 2298Google Scholar

    [46]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [47]

    Chen C, Wang Z W 2004 J. Chem. Phys. 121 4171Google Scholar

    [48]

    Wansbeek L W, Sahoo B K, Timmermans R G E, Das B P, Mukherjee D 2010 Phys. Rev. A 82 029901Google Scholar

    [49]

    Johnson W R, Safronova U I, Derevianko A, Safronova M S 2008 Phys. Rev. A 77 022510Google Scholar

    [50]

    Zhang J Y, Mitroy J, Bromley M W J 2007 Phys. Rev. A 75 810Google Scholar

    [51]

    Derevianko A, Babb J F, Dalgarno A 2001 Phys. Rev. A 63 052704Google Scholar

    [52]

    Cohen S, Themelis S. I. 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3705Google Scholar

    [53]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [54]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J D 38 353Google Scholar

  • 表 1  Be+离子和Li原子的截断参数${\rho _{l, j}}$(单位: a.u.)

    Table 1.  Cut-off parameters${\rho _{l, j}}$of Be+ ions and Li atoms (in a.u.).

    Statejρl, j
    Be+Li
    2s1/20.95521.40880
    2p1/20.87891.28466
    3/20.87751.28396
    3d3/20.12872.324
    5/20.12842.330
    下载: 导出CSV

    表 2  Be+离子和Li原子基态和部分低激发态相对于原子实的能级, 实验值(Exp.)是来自于NIST的数据(单位: a.u.)

    Table 2.  Energy levels of the ground state and some low-lying states of Be+ ions and Li atoms relative to atomic core. Experimental values (Exp.) are from the NIST data (in a.u.).

    StatejBe+Li
    RCICPExpt.[42]RCICPExpt.[42]
    2s 1/2 –0.66924767 –0.66924755 –0.1981419 –0.1981419
    2p 1/2 –0.52376962 –0.52376949 –0.1302358 –0.1302358
    3/2 –0.52373967 –0.52373953 –0.1302343 –0.1302343
    3s 1/2 –0.26719384 –0.26723337 –0.0741684 –0.0741817
    3p 1/2 –0.22954214 –0.22958234 –0.0572264 –0.0572354
    3/2 –0.22953331 –0.22957356 –0.0572260 –0.0572354
    3d 3/2 –0.22247809 –0.22247805 –0.0556055 –0.0556057
    5/2 –0.22247565 –0.22247565 –0.0556051 –0.0556055
    4s 1/2 –0.14313397 –0.14315285 –0.0386096 –0.0386151
    4p 1/2 –0.12811380 –0.12813485 –0.0319693 –0.0319744
    3/2 –0.12811009 –0.12813115 –0.0319691 –0.0319744
    4d 3/2 –0.12512357 –0.12512455 –0.0308153 –0.0312735
    5/2 –0.12512257 –0.12512345 –0.0308152 –0.0312734
    5s 1/2 –0.08905659 –0.08906605 –0.0236202 –0.0236365
    5p 1/2 –0.08159826 –0.08160960 –0.0203583 –0.0203739
    3/2 –0.08159637 –0.08160765 –0.0203583 –0.0203739
    5d 3/2 –0.08006698 –0.08006725 –0.0124153 –0.0200122
    5/2 –0.08006648 –0.08006670 –0.0124152 –0.0200122
    下载: 导出CSV

    表 3  Be+离子基态和部分低激发态之间跃迁的振子强度, “Diff.”表示用RCICP方法计算的结果与NIST结果之差的百分比

    Table 3.  Oscillator strengths of transitions between the ground state and some low-lying states of Be+ ions. “Diff.” represents the difference in percentage form calculated by RCICP method and NIST results.

    TransitionsRCICPNIST[42]Theor.[25]Diff./%
    2s1/2→2p1/20.166240.165960.16610.17
    2s1/2→2p3/20.332580.331980.33220.18
    2s1/2→3p1/20.027600.027680.02770.29
    2s1/2→3p3/20.055170.055400.05530.42
    2p1/2→3s1/20.064340.064380.06440.06
    2p3/2→3s1/20.064360.064380.06440.03
    2p1/2→4s1/20.010220.010390.01021.64
    2p3/2→4s1/20.010220.010390.01021.64
    2p1/2→3d3/20.63200.63200.63190.00
    2p3/2→3d3/20.06320.06320.06320.00
    2p3/2→3d5/20.56890.56890.56880.00
    3s1/2→3p1/20.27680.27670.27670.04
    3s1/2→3p3/20.55380.55350.55350.05
    3p1/2→3d3/20.080690.081130.08110.54
    3p3/2→3d3/20.080590.081030.0810.54
    3p3/2→3d5/20.072560.072940.0730.52
    3p1/2→4s1/20.13460.13470.13460.07
    3p3/2→4s1/20.13460.13470.13460.07
    下载: 导出CSV

    表 4  Li原子基态和部分低激发态之间跃迁的振子强度, “Diff.”表示用RCICP方法计算的结果与NIST结果之间差别的百分比

    Table 4.  Oscillator strengths of transitions between the ground state and some low-lying states of Li atoms. “Diff.” represents the difference in percentage form calculated by RCICP method and NIST results.

    TransitionsRCICPNIST[42]Theor.[29]Diff./%
    2s1/2→2p1/20.249150.248990.24900.06
    2s1/2→2p3/20.498320.497970.49810.07
    2s1/2→3p1/20.001570.001570.00160.00
    2s1/2→3p3/20.003130.003140.00320.32
    2p1/2→3s1/20.110580.110500.11060.07
    2p3/2→3s1/20.110590.110500.11060.08
    2p1/2→4s1/20.012850.012830.01280.16
    2p3/2→4s1/20.012850.012830.01280.16
    2p1/2→3d3/20.638760.638580.63860.03
    2p3/2→3d3/20.063880.063860.06390.03
    2p3/2→3d5/20.574890.574720.57470.03
    3s1/2→3p1/20.405120.40510.4050.00
    3s1/2→3p3/20.810270.81000.8100.03
    3p1/2→3d3/20.073970.07330.07440.91
    3p3/2→3d3/20.007400.007360.00740.54
    3p3/2→3d5/20.066570.06630.06690.41
    3p1/2→4s1/20.223250.22300.22320.11
    3p3/2→4s1/20.223250.22300.22320.11
    3d3/2→4p1/20.014530.014970.0152.94
    3d3/2→4p3/20.002900.002990.0033.01
    3d5/2→4p3/20.017430.017960.0182.95
    下载: 导出CSV

    表 5  Be+离子基态的电偶极极化率$\alpha _{\rm{0}}^{\rm{1}}$和超极化率${\gamma _{\rm{0}}}$, “Diff.”表示用RCICP方法计算的γ0与其它理论数据之间差别的百分比, 括号内的值表示不确定度

    Table 5.  Electric-dipole polarizability and hyperpolarizability of the ground state of Be+ ions. “Diff.” represents the difference of γ0 in percentage form calculated by RCICP and other theoretical method. The values in parentheses indicate the uncertainties.

    Method$\alpha _{\rm{0}}^{\rm{1}}$/a.u.γ0/a.u.Diff./%
    RCICP24.504(32)–11529.971(84)
    Coulomb approximation[43]24.77
    Variation-perturbation Hylleraas CI[44]24.5
    Hylleraas[24]24.489
    Asymptotic correct wave function[45]24.91
    Variation-perturbation FCCI[46,47]24.495
    Hartree-Fock plus core polarization[22]24.493–115110.16
    Hylleraas[22]24.4966(1)–11521.30(3)0.08
    Relativistic many-body calculation[25]24.483(4)–11496(6)0.29
    The finite field method[30]24.5661–11702.311.49
    下载: 导出CSV

    表 6  中间态对Be+离子基态超极化率的贡献, RCICPC表示2s→2pj, 2pj→3dj跃迁的约化矩阵元用NIST[42]结果替换之后计算的结果, 括号内的值表示RCICP相对于RCICPC的不确定度(单位: a.u.)

    Table 6.  Contributions to the hyperpolarizability of the ground state of Be+ ions. RCICPC represents that the reduced matrix elements of the 2s→2pj、2pj→3dj transitions are replaced by NIST[42] results. The values in parentheses indicate the uncertainties of RCICP relative to RCICPC (in a.u.).

    Contr.RCICPRCICPCRMBT[25]
    $\tfrac{1}{18}$T (s, p1/2, s, p1/2)34.34(2)34.3232.605(53)
    $-\tfrac{1}{18}$T (s, p1/2, s, p3/2)68.68(5)68.6368.886(92)
    $-\tfrac{1}{18}$T (s, p3/2, s, p1/2)68.68(5)68.6368.886(92)
    $\tfrac{1}{18}$T (s, p3/2, s, p3/2)137.35(10)137.25137.669(109)
    $T({\rm{s, }}{{\rm{p}}_{j'}}, {\rm{ s}}, {\rm{ }}{{\rm{p}}_{j''}})$308.04(12)308.83308.046(178)
    $\tfrac{1}{18}$T (s, p1/2, d3/2, p1/2)202.75(16)202.59202.031(121)
    $\tfrac{1}{18\sqrt{10} }$T (s, p1/2, d3/2, p3/2)40.55(4)40.5140.403(18)
    $\tfrac{1}{18\sqrt{10} }$T (s, p3/2, d3/2, p1/2)40.55(4)40.5140.403(18)
    $\tfrac{1}{180}$T (s, p3/2, d3/2, p3/2)8.11(1)8.108.080(3)
    $\tfrac{1}{30}$ T (s, p3/2, d5/2, p3/2)437.85(40)437.45438.434(148)
    $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$729.79(43)729.17729.351(192)
    $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$1999.67(6.95)1992.721995.743(382)
    γ0(2 s)–11529(84)–11456–11496(6)
    下载: 导出CSV

    表 7  Li原子基态的电偶极极化率$\alpha _{\rm{0}}^{\rm{1}}$和超极化率${\gamma _{\rm{0}}}$, 括号内的值表示不确定度(单位: a.u.)

    Table 7.  Electric-dipole polarizability and hyperpolarizability of the ground state of Li atoms. The values in parentheses indicate the uncertainties (in a.u.).

    Method$\alpha _{\rm{0}}^{\rm{1}}$γ0
    RCICP164.05(8)1920(3264)
    The coupled cluster (all single, double and triple substitution)[1]164.192880
    Finite-field quadratic configuration interaction[1]164.321020
    Hylleraas[31]164.112(1)3060(40)
    The relativistic coupled-cluster method[48]164.23
    Relativistic variation perturbation[49]164.084
    Relativistic all-order methods[29]164.16(5)
    Variation perturbation[33]164.103000
    Semiempirical pseudopotentials[26]164.0865000
    Frozen core Hamiltonian with a semiempirical polarization potential[50]164.21
    Finite-field fourth-order many-body perturbation theory[34]164.54300
    Configuration interaction[35]164.937000
    Relativistic ab initio methods[51]164.0(1)
    The restricted Hartree-Fock[32]170.1–55000
    The Rydberg-Klein-Rees inversion method with the quantum defect theory[52]164.143390
    Exp.[53]164(3)
    Exp.[54]164.2(11)
    下载: 导出CSV

    表 8  中间态对Li原子基态超极化率的贡献, RCICPC表示2s→2pj, 2pj→3dj跃迁的约化矩阵元用NIST[42]结果替换之后计算的结果, “Diff.”表示RCICP与RCICPC之间差别的百分比, 括号内的值表示RCICP相对于RCICPC的不确定度

    Table 8.  Contributions to the hyperpolarizability of the ground state of Li atoms. RCICPC represents that the reduced matrix elements of 2s→2pj, 2pj→3dj transitions are replaced by NIST[42] results. “Diff.” represents the difference in percentage form between RCICP method and RCICPC. The values in parentheses indicate the uncertainties of RCICP relative to RCICPC.

    Contr.RCICP/a.u.RCICPC/a.u.Diff. /%
    $ \frac{1}{18} $T (s, p1/2, s, p1/2)8314(2)83120.03
    $ -\frac{1}{18} $T (s, p1/2, s, p3/2)16629(5)166240.03
    $ -\frac{1}{18} $T (s, p3/2, s, p1/2)16629(5)166240.03
    $ \frac{1}{18} $T (s, p3/2, s, p3/2)33259(11)332480.03
    $T({\rm{s}}, {{\rm{p}}_{j'}}, {\rm{s}}, {{\rm{p}}_{j''}})$74833(13)748090.02
    $ \frac{1}{18} $T (s, p1/2, d3/2, p1/2)33812(13)337990.04
    $ \frac{1}{18\sqrt{10}} $T (s, p1/2, d3/2, p3/2)6762(3)67590.04
    $ \frac{1}{18\sqrt{10}} $T (s, p3/2, d3/2, p1/2)6762(3)67590.04
    $ \frac{1}{180} $T (s, p3/2, d3/2, p3/2)1352(0)13520.00
    $ \frac{1}{30} $ T (s, p3/2, d5/2, p3/2)73033(40)729930.05
    $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$121723(42)1216610.03
    $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$196396(268)1961280.14
    γ0(2 s)1920(3264)4109170
    下载: 导出CSV
  • [1]

    Kassimi E B, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [2]

    Dür W, Briegel H J 2002 Phys. Rev. Lett. 90 067901Google Scholar

    [3]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2005 Phys. Rev. A 72 052330Google Scholar

    [4]

    Jiang L, Taylor J M, Sørensen A S, Lukin M D 2007 Phys. Rev. A 76 062323Google Scholar

    [5]

    Gorshkov A V, Rey A M, Daley A J, Boyd M M, Ye J, Zoller P, Lukin M D 2009 Phys. Rev. Lett. 102 110503Google Scholar

    [6]

    Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639Google Scholar

    [7]

    Neuhauser W, Hohenstatt M, Toschek P E, Dehmelt H 1978 Phys. Rev. Lett. 41 233Google Scholar

    [8]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [9]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [10]

    Pihan-Le Bars H, Guerlin C, Bailey Q G, Bize S, Wolf P 2017 arXiv: 1701.06902[gr-qc]

    [11]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [12]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [13]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [16]

    Brusch A, Le T R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [17]

    Barbe Z W, Lemke J E, Polt N D 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [18]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [19]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [20]

    Katori H, Takamoto M, Pal'Chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [21]

    Porsev S G, Safronova M S, Safronova U I, Kozlov M G 2018 Phys. Rev. Lett. 120 063204Google Scholar

    [22]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [23]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [24]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [25]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [26]

    Fuentealba P, Reyes O 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2245Google Scholar

    [27]

    Jiang J, Mitroy J, Cheng Y J, Bromley M W J 2016 Phys. Rev. A 94 062514Google Scholar

    [28]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [29]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [30]

    Yin D, Zhang Y H, Li C B, Gao K L, Shi T Y 2016 Sci. China Phys. Mech. 59 690011Google Scholar

    [31]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [32]

    Stiehler J, Hinze J 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4055Google Scholar

    [33]

    Pipin J, Bishop D M 1992 Phys. Rev. A 45 2736Google Scholar

    [34]

    Maroulis G, Thakkar A J 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2439Google Scholar

    [35]

    Nicolaides C A, Themelis S I 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2217Google Scholar

    [36]

    Kaneko S 1977 J. Phys. B: At. Mol. Opt. Phys. 10 3347Google Scholar

    [37]

    Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512Google Scholar

    [38]

    Bhatia A K, Drachman R J 1997 Can. J. Phys. 75 11Google Scholar

    [39]

    Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375Google Scholar

    [40]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [41]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [42]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team https://physics.nist.gov/asd [2019-9-10]

    [43]

    Adelman S A, Szabo A 1973 J. Chem. Phys. 58 687Google Scholar

    [44]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [45]

    Patil S H, Tang K T 1997 J. Chem. Phys. 106 2298Google Scholar

    [46]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [47]

    Chen C, Wang Z W 2004 J. Chem. Phys. 121 4171Google Scholar

    [48]

    Wansbeek L W, Sahoo B K, Timmermans R G E, Das B P, Mukherjee D 2010 Phys. Rev. A 82 029901Google Scholar

    [49]

    Johnson W R, Safronova U I, Derevianko A, Safronova M S 2008 Phys. Rev. A 77 022510Google Scholar

    [50]

    Zhang J Y, Mitroy J, Bromley M W J 2007 Phys. Rev. A 75 810Google Scholar

    [51]

    Derevianko A, Babb J F, Dalgarno A 2001 Phys. Rev. A 63 052704Google Scholar

    [52]

    Cohen S, Themelis S. I. 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3705Google Scholar

    [53]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [54]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J D 38 353Google Scholar

  • [1] 杨威, 丁士缘, 孙保元. 基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型. 物理学报, 2024, 73(6): 062102. doi: 10.7498/aps.73.20231632
    [2] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究. 物理学报, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [3] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [4] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动. 物理学报, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [5] 游阳明, 王炳章, 王吉有. P原子的光学模型势与核极化修正. 物理学报, 2012, 61(20): 202401. doi: 10.7498/aps.61.202401
    [6] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究. 物理学报, 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [7] 朱菁, 吕昌贵, 洪旭升, 崔一平. 分子一阶超极化率溶剂效应的理论研究. 物理学报, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [8] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性. 物理学报, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [9] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 物理学报, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [10] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究. 物理学报, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [11] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊. 有机分子第一超极化率色散效应和双光子共振增强理论研究. 物理学报, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [12] 陈 洪, 梅 花, 沈彭年, 姜焕清. 重夸克偶素质量谱的相对论夸克模型研究(已撤稿). 物理学报, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [13] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [14] 唐昌建, 宫玉彬, 杨玉芷. 二维相对论运动等离子体的介电率张量. 物理学报, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [15] 郑仰东, 李俊庆, 李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [16] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波. 物理学报, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
    [17] 李高翔, 彭金生. 论Jsynes-Cummings模型中原子偶极压缩和光场压缩间的关联. 物理学报, 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [18] 屈一至, 仝晓民, 李家明. 电子与原子、离子碰撞过程的相对论效应. 物理学报, 1995, 44(11): 1719-1726. doi: 10.7498/aps.44.1719
    [19] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [20] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象. 物理学报, 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
计量
  • 文章访问数:  11403
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-10-12
  • 上网日期:  2021-02-03
  • 刊出日期:  2021-02-20

/

返回文章
返回