搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船载系泊状态下基于原子重力仪的绝对重力测量

程冰 周寅 陈佩军 张凯军 朱栋 王凯楠 翁堪兴 王河林 彭树萍 王肖隆 吴彬 林强

引用本文:
Citation:

船载系泊状态下基于原子重力仪的绝对重力测量

程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强

Absolute gravity measurement based on atomic gravimeter under mooring state of a ship

Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang
PDF
HTML
导出引用
  • 重力场是反映地球质量分布及变化的重要参数, 动态重力测量在地质调查、地球物理、资源勘探等领域有着重要应用. 目前动态重力测量均基于相对测量原理, 动态相对重力仪存在零点漂移问题, 影响其测量性能. 动态绝对重力仪可以为相对重力仪提供同步同址校准, 解决其长漂问题, 因此备受关注. 本文基于原子重力仪和惯性稳定平台, 搭建了一套船载绝对重力动态测量系统, 并在船载系泊状态下开展了绝对重力动态测量实验. 经评估, 船载系泊环境下的重力测量灵敏度为16.6 mGal/Hz–1/2, 1000 s积分时间内重力测量的分辨率可达0.7 mGal. 通过两周的绝对重力测量, 评估了系统的稳定性. 为了评估绝对重力的动态测量精度, 将船上测量点与码头高精度绝对重力基准点的绝对重力值进行了比较, 两点之间的绝对重力值差及其不确定度评估结果为(–0.072 ± 0.134) mGal. 本文结果为海洋相对重力仪的同时同船校准提供了一种新方案.
    The gravity field is one of the basic physical fields of the Earth. Dynamic measurements could improve the efficiency of gravity surveying and mapping, and have very important applications in the fields of geological survey, geophysics, resource exploration, inertial navigation and so on. Currently, dynamic gravity measurements are mostly based on relative measurements. The dynamic relative gravimeters have the problem of zero drift, which affects the measurement performance. Dynamic absolute gravimeters can provide synchronous and co-site calibration for relative gravimeters and solve the problem of long drift. Therefore dynamic absolute gravimeters have attracted much attention. Based on a homemade atomic gravimeter and an inertial stable platform, a system of absolute gravity dynamic measurement has been built on a ship. The dynamic measurement experiments of absolute gravity under the state of ship-borne mooring have been carried out. It is found that the frequency of vibration noises of this ship is around 0.2 Hz, and the amplitude is about 1 Gal. In the case of harsh environment, the temperature and humidity of the used container have been controlled to be 25 ℃ and 70% via the air conditioning. Then, a continuous gravity measurement of 5 hour has been taken, and the peak to peak value of 80 mGal has been achieved. The values of gravity have no drifts at all during the measurements. Besides, the sensitivity of gravity measurement has been evaluated to be 16.6 mGal/Hz–1/2 under the environment of ship-borne mooring. A resolution of 0.7 mGal could be reached with an integration time of 1000 s. The stability of this system has been estimated after the measurement of absolute gravity for two weeks, and the change of absolute gravity values is about 0.5 mGal. Finally, in order to evaluate the accuracy of the dynamic measurement of absolute gravity, the measured average value of absolute gravity at ship-borne has been compared with the value of the high-precision absolute gravity reference point of the pier, and the results are estimated to be (–0.072 ± 0.134) mGal. The results of this paper could provide a new solution for the simultaneous and co-site calibration of the ocean relative gravimeter on the same ship.
      通信作者: 吴彬, wubin@zjut.edu.cn ; 林强, qlin@zjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFC0601602, 2016YFF0200206)、国家自然科学基金(批准号: 51905482, 61727821, 61875175, 11704334)、 中国自然资源航空物探遥感中心项目(批准号: DD20189831)资助的课题.
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFC0601602, 2016YFF0200206), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334), and the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program (Grant No. DD20189831).
    [1]

    Baumann H, Klingele E E, Marson I 2012 Geophys. Prospect. 60 361Google Scholar

    [2]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [3]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [4]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [5]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [6]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [7]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [8]

    Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar

    [9]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [10]

    Wu B, Zhu D, Cheng B, Wu L M, Wang K N, Wang Z Y, Shu Q, Li R, Wang H L, Wang X L, Lin Q 2019 Opt. Express 27 11252Google Scholar

    [11]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [12]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [13]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [14]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [15]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [16]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [17]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 2Google Scholar

    [18]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [19]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [20]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [21]

    Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [24]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 1

    [25]

    Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar

    [26]

    Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 1Google Scholar

    [27]

    Le Gouet J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [28]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

  • 图 1  船载系泊状态下的绝对重力测量系统原理图

    Fig. 1.  The schematic diagram of absolute gravity measurement system under mooring state of a ship.

    图 2  实验系统的示意图

    Fig. 2.  The schematic diagram of the experimental system.

    图 3  实验测试现场图

    Fig. 3.  The photo of the experimental test.

    图 4  船载测量环境 (a)船体高度变化; (b)船体加速度噪声功率谱

    Fig. 4.  The measuremental environment of the ship: (a) The variation of the altitude of the ship; (b) the noise power spectrum density of the acceleration of the ship.

    图 5  原子干涉条纹信号(T = 10 ms). 蓝色空心四边形: 原始原子布居数信号; 黑色空心三角形: 振动修正后信号; 红线: 拟合曲线

    Fig. 5.  The signals of atomic interference fringes (T = 10 ms). Blue dots: The original signals of atomic population; Black dots: The signals after vibration correction; Red line: the fitted curve.

    图 6  系泊状态下的连续重力变化数据. 灰点: 原始重力数据; 红线: 移动平均后的数据

    Fig. 6.  The continuous changes of gravity under mooring state of a ship. Grey dots: The original data of measured gravity; Red line: The data after the dealing of moving average.

    图 7  船载系泊状态下的重力测量灵敏度评估

    Fig. 7.  The sensitivity evaluation of measured gravity data when the ship is moored.

    图 8  绝对重力测量值的长期稳定性评估

    Fig. 8.  The estimation of long-term stability for the measured absolute gravity values.

  • [1]

    Baumann H, Klingele E E, Marson I 2012 Geophys. Prospect. 60 361Google Scholar

    [2]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [3]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [4]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [5]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [6]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [7]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [8]

    Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar

    [9]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [10]

    Wu B, Zhu D, Cheng B, Wu L M, Wang K N, Wang Z Y, Shu Q, Li R, Wang H L, Wang X L, Lin Q 2019 Opt. Express 27 11252Google Scholar

    [11]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [12]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [13]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [14]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [15]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [16]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [17]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 2Google Scholar

    [18]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [19]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [20]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [21]

    Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [24]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 1

    [25]

    Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar

    [26]

    Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 1Google Scholar

    [27]

    Le Gouet J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [28]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

  • [1] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量. 物理学报, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [2] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [4] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [5] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [6] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [7] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211686
    [8] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [9] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [11] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [12] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [13] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [14] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [15] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [16] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [17] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响. 物理学报, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
计量
  • 文章访问数:  7515
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-13
  • 修回日期:  2020-10-23
  • 上网日期:  2021-02-06
  • 刊出日期:  2021-02-20

/

返回文章
返回