搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特丁基对苯二酚的光谱及密度泛函研究

施斌 袁荔 唐天宇 陆利敏 赵先豪 魏晓楠 唐延林

引用本文:
Citation:

特丁基对苯二酚的光谱及密度泛函研究

施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林

Spectral analysis and density functional theory study of tert-butylhydroquinone

Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin
PDF
HTML
导出引用
  • 特丁基对苯二酚是重要的食品抗氧化剂. 理论上, 基于密度泛函理论, 采用B3LYP泛函及6-311G(d,p)基组在气相环境下优化分子的结构并进行频率计算. 在此基础上, 基于含时密度泛函理论, 选用SMD (solvation model based on density)溶剂模型, 利用B3LYP泛函并结合def2-TZVP基组计算分子在无水乙醇溶剂中的前50个激发态. 再通过Multiwfn软件对红外光谱做振动分析并考察分子间相互作用对红外光谱的影响, 对紫外光谱做分子轨道和电子空穴分析. 实验上, 通过KBr压片法, 利用傅里叶红外变换光谱仪测定样品红外光谱. 采用液相法, 以乙醇为溶剂, 利用紫外可见分光光度计测定样品紫外光谱. 通过对比分析可知, 理论光谱与实验光谱总体吻合较好. 红外光谱各基团的特征吸收峰都较为明显且较好吻合, 特丁基对苯二酚二聚体存在氢键作用, 这使得O—H键的强度被削弱, 导致吸收频率降低并在3670—3070 cm–1处出现一个宽峰. 紫外光谱主要由基态跃迁至第1, 2, 6, 7激发态形成, 最大吸收峰位于200 nm以下, 为π→π*和σ→π*跃迁形成, 268.8 nm和221.4 nm处的吸收峰均为n→π*和π→π*跃迁形成. 由电子空穴图可知, 这4个主要激发均为电子局域激发.
    Tert-butylhydroquinone (TBHQ) is an important food antioxidant. Based on density functional theory, the B3LYP functional is used to optimize the geometric configuration and calculate the frequency of TBHQ molecule in gas phase at a level of 6-311g (d, p) basis set. On this basis, based on the time-dependent density functional theory, SMD implicit solvent model is selected, and the first 50 excited states of molecule in ethanol solvent are calculated by using B3LYP functional and def2-TZVP basis set. Multiwfn software is used to analyze the vibration of IR spectrum, the influence of interaction among molecules on IR spectrum and the molecular orbital and electron-hole of UV spectrum. Experimentally, Fourier transform infrared spectrometer (FTIR) is used to measure the IR spectrum of TBHQ sample by KBr tablet method. The UV spectrum of the sample determined in the ethanol solvent by ultraviolet visible spectrophotometer. By comparative analysis, it can be seen that the theoretical spectra are in good agreement with the experimental spectra. The characteristic absorption peaks of each group in the IR spectra are obvious, and the theoretical peaks are in good agreement with the positions of the measured peaks. The hydrogen bonding of dimers and polymers in the TBHQ sample can weaken the O—H bond strength of a single molecule, thus weakening the vibration frequency of the O—H bond and resulting in a wide peak at 3670–3070 cm–1 in the experimental IR spectrum. The UV spectra are mainly formed from the ground state to the first, second, sixth and seventh excited state. The maximum absorption peak in the UV spectrum is below 200 nm and is formed by the transitions of π→π* and σ→π*. The absorption peaks at 268.8 nm and 221.4 nm are formed by the transitions of n→π* and π→π*. It can be seen from the electron-hole distribution diagram that these four excitations are all electron local excitation. This study may play a certain role in understanding the molecular structure and excitation properties of TBHQ, as well as the formation mechanism of its IR and UV spectra, and also conduce to understanding its antioxidant properties.
      通信作者: 唐延林, tylgzu@163.com
    • 基金项目: 国家自然科学基金(批准号: 11164004)、贵州省光子科学与技术创新人才团队(批准号: 20154017)和贵州大学物理一流学科建设提升计划(2019)资助的课题
      Corresponding author: Tang Yan-Lin, tylgzu@163.com
    • Funds: National Natural Science Foundation of China (Grant No. 11164004), the Photon Science and Technology Innovation Talent Team of Guizhou Province, China (Grant No. 20154017), and the First-Class Physics Promotion Programme of Guizhou University, China (2019)
    [1]

    Comert E D, Gokmen V 2018 Food Res. Int. 105 76Google Scholar

    [2]

    Zeb A 2020 J. Food Biochem. 44 e13394Google Scholar

    [3]

    Martinez M L, Penci M C, Ixtaina V, Ribotta P D, Maestri D 2013 LWT-Food Sci. Technol. 51 44Google Scholar

    [4]

    Xu X L, Bi Y L, Wang H Y, Li J, Xu Z Y 2019 Eur. J. Lipid Sci. Technol. 121 1800510Google Scholar

    [5]

    Gharavi N, Haggarty S, El-Kadi A O S 2007 Curr. Drug Metab. 8 1

    [6]

    Alamed J, Chaiyasit W, McClements D J, Decker E A 2009 J. Agric. Food Chem. 57 2969Google Scholar

    [7]

    逯美红, 雷海英, 王志军, 张洁 2017 光谱学与光谱分析 37 2087Google Scholar

    Lu M H, Lei H Y, Wang Z J, Zhang J 2017 Spectrosc. Spect. Anal. 37 2087Google Scholar

    [8]

    Rode J E, Kaczorek D, Wasiewicz A, Kawecki R, Jawiczuk M, Dobrowolski J C 2018 J. Mol. Spectrosc. 354 37Google Scholar

    [9]

    Snehalatha M, Ravikumar C, Joe I H, Sekar N, Jayakumar V S 2009 Spectrochim. Acta A 72 654Google Scholar

    [10]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 (Rev. A.03). Gaussian: Inc., Wallingford CT

    [11]

    Stephens P J, Devlin F J, Chabalowski C F, Frisch M J 1994 J. Phys. Chem. 98 11623Google Scholar

    [12]

    于建成, 唐延林, 常瑞, 魏晓楠, 袁荔, 袁园 2019 光谱学与光谱分析 39 1846Google Scholar

    Yu J C, Tang Y L, Chang R, Wei X N, Yuan L, Yuan Y 2019 Spectrosc. Spect. Anal. 39 1846Google Scholar

    [13]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [14]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [15]

    彭婕, 张嗣杰, 王苛, Dove Martin 2020 物理学报 69 023101Google Scholar

    Peng J, Zhang S J, Wang K, Dove M 2020 Acta Phys. Sin. 69 023101Google Scholar

    [16]

    Liu Z Y, Lu T, Chen Q X 2020 Carbon 165 461Google Scholar

    [17]

    Marenich A V, Cramer C J, Truhlar D G 2009 J. Phys. Chem. B 113 6378Google Scholar

    [18]

    Lu T 2020 molclus program Version 1.9.6 http://www.keinsci.com/research/molclus.html [2020-7-25]

    [19]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [20]

    Lu T, Chen F W 2013 J. Mol. Model. 19 5387Google Scholar

    [21]

    Chai J D, Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615Google Scholar

    [22]

    Zhao Y, Truhlar D G 2008 Theor. Chem. Acc. 120 215Google Scholar

    [23]

    Multiwfn Manual Version 3.7, Lu T http://sobereva.com/multiwfn/ [2020-9-17]

    [24]

    Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J, Yang W T 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [25]

    赵明文, 夏曰源, 马玉臣, 刘向东, 英敏菊 2002 物理学报 51 2440Google Scholar

    Zhao M W, Xia Y Y, Ma Y C, Liu X D, Ying M J 2002 Acta Phys. Sin. 51 2440Google Scholar

    [26]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [27]

    Emamian S, Lu T, Kruse H, Emamian H 2019 J. Comput. Chem. 40 2868Google Scholar

  • 图 1  TBHQ分子几何构型

    Fig. 1.  Geometric structure of TBHQ molecule.

    图 2  TBHQ红外光谱

    Fig. 2.  IR spectra of TBHQ.

    图 3  TBHQ二聚体的单点能

    Fig. 3.  Conformational energy of the dimer.

    图 4  TBHQ二聚体RDG函数等值面图 (a) 二聚体3; (b) 二聚体8; (c) 二聚体10; (d) 二聚体13; (e) 二聚体15

    Fig. 4.  RDG function isosurface map of dimer: (a) Dimer 3; (b) dimer 8; (c) dimer 10; (d) dimer 13; (e) dimer 15.

    图 5  二聚体10的红外光谱

    Fig. 5.  IR spectrum of dimer 10.

    图 6  TBHQ分子理论紫外光谱

    Fig. 6.  Theoretical UV spectrum of TBHQ.

    图 7  TBHQ分子实验紫外光谱

    Fig. 7.  Experimental UV spectrum of TBHQ.

    图 8  分子轨道波函数等值面图 (a) 第44轨道; (b) 第45轨道; (c) 第45轨道(等值面为0.18); (d) 第46轨道; (e) 第47轨道; (f) 第47轨道(等值面为0.14)

    Fig. 8.  Isosurface of molecular orbital wavefunction: (a) The 44th molecular orbital; (b) the 45th molecular orbital; (c) the 45th molecular orbital (isosurface = 0.18); (d) the 46th molecular orbital; (e) the 47th molecular orbital; (f) the 47 th molecular orbital (isosurface = 0.14).

    图 9  TBHQ的电子空穴图 (a) S0—S1; (b) S0—S2; (c) S0—S6; (d) S0—S7

    Fig. 9.  Electron-hole distribution diagram of TBHQ: (a) S0–S1; (b) S0–S2; (c) S0–S6; (d) S0–S7.

    表 1  TBHQ分子几何结构优化参数

    Table 1.  Optimized geometry structure parameters of TBHQ.

    Maximum force/a.u.RMS force/a.u.Maximum displacement/a.u.Root mean square displacement/a.u.
    0.0000060.0000010.0001930.000036
    下载: 导出CSV

    表 2  TBHQ分子主要键长、键角、二面角

    Table 2.  The main bond length, bond angle, and dihedral angle of TBHQ.

    键长R(2, 23)0.13725 nm
    R(4, 10)0.15417 nm
    R(5, 25)0.13791 nm
    键角A(2, 23, 24)109.0769º
    A(5, 25, 26)108.6475º
    A(4, 10, 11)111.9551º
    二面角D(3, 4, 10, 11)0.0003º
    下载: 导出CSV

    表 3  TBHQ分子红外光谱振动分析

    Table 3.  Vibration analysis of IR spectra of TBHQ.

    序号计算光谱/cm–1实验光谱/cm–1振动分析
    13709.243288.54酚羟基的O—H伸缩振动
    23034.343001.16苯环上C—H伸缩振动
    32989.002962.58丁基上C—H伸缩振动
    41581.861589.30苯环的环伸缩振动
    51483.161485.15苯环的环伸缩振动及C—H弯曲振动
    61440.481442.72C—H弯曲振动
    71284.431309.63C—O伸缩振动及C—H弯曲振动
    81169.721184.26O—H面内弯曲振动及C—H面内弯曲振动
    9917.64933.52C—H弯曲振动
    10757.59771.51苯环上C—H面外弯曲振动
    下载: 导出CSV

    表 4  TBHQ分子的激发性质

    Table 4.  Excited state properties of TBHQ.

    理论吸收峰值实验吸收峰值激发态激发能/eV波长/nm振子强度轨道跃迁贡献权重/%
    221.4 nm
    268.8 nm
    229.1 nm
    293.7 nm
    14.6118268.840.110045→46
    44→47
    91.91
    7.86
    25.6003221.390.067645→47
    44→46
    78.65
    20.57
    66.4329192.730.690244→46
    45→47
    77.09
    20.07
    76.7109184.750.566944→47
    45→46
    89.30
    7.24
    下载: 导出CSV

    表 5  电子空穴相关参数

    Table 5.  Electron-hole distribution related parameters of TBHQ.

    Sr/a.uD/nmH/nmt/nmHDIEDI
    S0—S10.7890.00750.2115–0.12599.638.81
    S0—S20.9170.00340.2130–0.12928.818.72
    S0—S60.9130.02710.2139–0.11348.007.88
    S0—S70.7620.02230.2127–0.11798.639.39
    下载: 导出CSV
  • [1]

    Comert E D, Gokmen V 2018 Food Res. Int. 105 76Google Scholar

    [2]

    Zeb A 2020 J. Food Biochem. 44 e13394Google Scholar

    [3]

    Martinez M L, Penci M C, Ixtaina V, Ribotta P D, Maestri D 2013 LWT-Food Sci. Technol. 51 44Google Scholar

    [4]

    Xu X L, Bi Y L, Wang H Y, Li J, Xu Z Y 2019 Eur. J. Lipid Sci. Technol. 121 1800510Google Scholar

    [5]

    Gharavi N, Haggarty S, El-Kadi A O S 2007 Curr. Drug Metab. 8 1

    [6]

    Alamed J, Chaiyasit W, McClements D J, Decker E A 2009 J. Agric. Food Chem. 57 2969Google Scholar

    [7]

    逯美红, 雷海英, 王志军, 张洁 2017 光谱学与光谱分析 37 2087Google Scholar

    Lu M H, Lei H Y, Wang Z J, Zhang J 2017 Spectrosc. Spect. Anal. 37 2087Google Scholar

    [8]

    Rode J E, Kaczorek D, Wasiewicz A, Kawecki R, Jawiczuk M, Dobrowolski J C 2018 J. Mol. Spectrosc. 354 37Google Scholar

    [9]

    Snehalatha M, Ravikumar C, Joe I H, Sekar N, Jayakumar V S 2009 Spectrochim. Acta A 72 654Google Scholar

    [10]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 (Rev. A.03). Gaussian: Inc., Wallingford CT

    [11]

    Stephens P J, Devlin F J, Chabalowski C F, Frisch M J 1994 J. Phys. Chem. 98 11623Google Scholar

    [12]

    于建成, 唐延林, 常瑞, 魏晓楠, 袁荔, 袁园 2019 光谱学与光谱分析 39 1846Google Scholar

    Yu J C, Tang Y L, Chang R, Wei X N, Yuan L, Yuan Y 2019 Spectrosc. Spect. Anal. 39 1846Google Scholar

    [13]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [14]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [15]

    彭婕, 张嗣杰, 王苛, Dove Martin 2020 物理学报 69 023101Google Scholar

    Peng J, Zhang S J, Wang K, Dove M 2020 Acta Phys. Sin. 69 023101Google Scholar

    [16]

    Liu Z Y, Lu T, Chen Q X 2020 Carbon 165 461Google Scholar

    [17]

    Marenich A V, Cramer C J, Truhlar D G 2009 J. Phys. Chem. B 113 6378Google Scholar

    [18]

    Lu T 2020 molclus program Version 1.9.6 http://www.keinsci.com/research/molclus.html [2020-7-25]

    [19]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [20]

    Lu T, Chen F W 2013 J. Mol. Model. 19 5387Google Scholar

    [21]

    Chai J D, Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615Google Scholar

    [22]

    Zhao Y, Truhlar D G 2008 Theor. Chem. Acc. 120 215Google Scholar

    [23]

    Multiwfn Manual Version 3.7, Lu T http://sobereva.com/multiwfn/ [2020-9-17]

    [24]

    Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J, Yang W T 2010 J. Am. Chem. Soc. 132 6498Google Scholar

    [25]

    赵明文, 夏曰源, 马玉臣, 刘向东, 英敏菊 2002 物理学报 51 2440Google Scholar

    Zhao M W, Xia Y Y, Ma Y C, Liu X D, Ying M J 2002 Acta Phys. Sin. 51 2440Google Scholar

    [26]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [27]

    Emamian S, Lu T, Kruse H, Emamian H 2019 J. Comput. Chem. 40 2868Google Scholar

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [3] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [5] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [8] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [10] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [11] 刘江平, 黎军, 刘元琼, 雷海乐, 韦建军. 低温下氘分子红外吸收特性研究. 物理学报, 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [12] 张秀荣, 李扬, 尹琳, 王杨杨. WnNim (n+m=8)团簇的极性和光谱性质的理论研究. 物理学报, 2013, 62(2): 023601. doi: 10.7498/aps.62.023601
    [13] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [14] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [15] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [16] 莽朝永, 苟高章, 刘彩萍, 吴克琛. 木榄醇手性光谱的密度泛函研究. 物理学报, 2011, 60(4): 043101. doi: 10.7498/aps.60.043101
    [17] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征. 物理学报, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [18] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究. 物理学报, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [19] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究. 物理学报, 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  7194
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-19
  • 修回日期:  2020-10-21
  • 上网日期:  2021-02-24
  • 刊出日期:  2021-03-05

/

返回文章
返回