搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点单光子源的光纤耦合

尚向军 李叔伦 马奔 陈瑶 何小武 倪海桥 牛智川

引用本文:
Citation:

量子点单光子源的光纤耦合

尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川

Optical fiber coupling of quantum dot single photon sources

Shang Xiang-Jun, Li Shu-Lun, Ma Ben, Chen Yao, He Xiao-Wu, Ni Hai-Qiao, Niu Zhi-Chuan
PDF
HTML
导出引用
  • 半导体量子点在低温下产生谱线细锐的激子发光可制备单光子源. 光纤耦合可避免低温共聚焦装置扫描定位和振动影响, 是实现单光子源即插即用和组件化的关键技术. 在耦合工艺上, 基于微区定位标记发展出拉锥光纤与光子晶体腔或波导侧向耦合、大数值孔径锥形端面光纤与量子点样片垂直耦合等技术; 然而, 上述工艺需要多维度精密调节以避免柔软光纤的畸形弯曲实现对准和高效耦合. 陶瓷插针或石英V槽封装的光纤无弯曲且具有大平滑端面, 只要与单量子点样片对准贴合就可保证垂直收光, V槽封装的排式光纤还可通过盲对粘合避免扫描对准, 耦合简单. 本文在前期排式光纤粘合少对数分布Bragg反射镜(distributed Bragg reflector, DBR)微柱样片实现单光子输出基础上, 经理论模拟采用多对数DBR腔提升样片垂直出光和光纤收光效率, 使光纤输出单光子计数率大大提升.
    Semiconductor quantum dot (QD) at low temperature will create excitons with sharp spectral lines for single photon emission. Optical fiber coupling avoids scanning for positioning and vibration influence in low-temperature confocal setup, and is a key technology in realizing the plug-play and componentization of QD single photon sources. For the fiber coupling techniques, the lateral coupling of a photonic crystal cavity or waveguide with a tapered fiber, or normal coupling of a QD chip with a tapered facet fiber in a large numerical aperture has been developed based on mask in a micro-region; however, the above techniques require multi-dimensional precise adjusting in order to avoid abnormally bending a soft fiber to realize alignment and high-efficiency coupling. Ceramic ferrule or silica V-shaped groove-mounted fiber has a large smooth facet and no bending; it can collect light in the normal direction by being aligned with bonding QD chip; V-shaped groove-mounted fiber array also enables a random adhesion and avoid scanning for alignment, which is simple in technique. This work is based on the previous realization of single photon output by random adhesion of few-pair DBR micropillar chip with V-shaped groove-mounted fiber array, and uses many-pair DBR cavity chip with theoretical simulation optimization to improve the normal light extraction and its fiber collection efficiency, and greatly improves the fiber output of single photon count rate.
      通信作者: 牛智川, zcniu@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB2200504, 2018YFA0306100)、国家自然科学基金(批准号: 61505196)和中国科学院仪器研制项目(批准号: YJKYYQ20170032)资助的课题
      Corresponding author: Niu Zhi-Chuan, zcniu@semi.ac.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant Nos. 2018YFB2200504, 2018YFA0306100), the National Natural Science Foundation of China (Grant No. 61505196), and the Scientific Instrument Developing Project of Chinese Academy of Sciences, China (Grant No. YJKYYQ20170032)
    [1]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Hofling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [2]

    Pooley M A, Ellis D J P, Patel R B, Bennett A J, Chan K H A, Farrer I, Ritchie D A, Shields A J 2012 Appl. Phys. Lett. 100 211103Google Scholar

    [3]

    Feng L, Zhang M, Xiong X, Chen Y, Wu H, Li M, Guo G P, Guo G C, Dai D X, Ren X F 2019 npj Quant. Inform. 5 2Google Scholar

    [4]

    Lu L, Xia L, Chen Z, Chen L, Yu T, Tao T, Ma W, Pan Y, Cai X, Lu Y, Zhu S, Ma X 2020 npj Quant. Inform. 6 30Google Scholar

    [5]

    Paesani S, Borghi M, Signorini S, Maïnos A, Pavesi L, Laing A 2020 Nat. Commun. 11 2505Google Scholar

    [6]

    Wu R, Lin J, Wang M, Fang Z, Chu W, Zhang J, Zhou J, Cheng Y 2019 Opt. Lett. 44 4698Google Scholar

    [7]

    Qiang X, Zhou X, Wang J, Wilkes C M, Loke T, Gara S O, Kling L, Marshall G D, Santagati R, Ralph T C, Wang J B, O’Brien J L, Thompson M G, Matthews J C F 2018 Nat. Photonics 12 534Google Scholar

    [8]

    Najafi F, Mower J, Harris N C, Bellei F, Dane A, Lee C, Hu X, Kharel P, Marsili F, Assefa S, Berggren K K, Englund D 2015 Nat. Commun. 6 5873Google Scholar

    [9]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2016 Optica 3 1274Google Scholar

    [10]

    Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Res. Lett. 12 378Google Scholar

    [11]

    Lee C M, Lim H J, Schneider C, Maier S, Hofling S, Kamp M, Lee Y H 2015 Sci. Rep. 5 14309Google Scholar

    [12]

    Davanco M I, Rakher M T, Wegscheider W, Schuh D, Badolato A, Srinivasan K 2011 Appl. Phys. Lett. 99 121101Google Scholar

    [13]

    Chonan S, Kato S, Aoki T 2014 Sci. Rep. 4 4785Google Scholar

    [14]

    Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104Google Scholar

    [15]

    Muller A, Flagg E B, Metcalfe M, Lawall J, Solomon G S 2009 Appl. Phys. Lett. 95 173101Google Scholar

    [16]

    Gazzano O, Vasconcellos S M, Arnold C, Nowak A, Galopin E, Sagnes I, Lanco L, Lemaitre A, Senellart P 2013 Nat. Commun. 4 1425Google Scholar

    [17]

    Ding X, He Y M, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401Google Scholar

    [18]

    Li S L, Chen Y, Shang X J, Yu Y, Yang J W, Huang J H, Su X B, Shen J X, Sun B Q, Ni H Q, Su X L, Wang K Y, Niu Z C 2020 Nanoscale Res. Lett. 15 145Google Scholar

    [19]

    Shang X J, Ma B, Ni H Q, Chen Z S, Li S L, Chen Y, He X W, Su X L, Shi Y J, Niu Z C 2020 AIP Adv. 10 085126Google Scholar

    [20]

    Makhov I S, Panevin V Y, Sofronov A N, Firsov D A, Vorobjev L E, Vinnichenko M Y, Vasil'ev A P, Maleev N A 2017 Superlattices and Microstruct. 112 79Google Scholar

    [21]

    Typical Properties of Norland Optical Adhesive (NOA) 61, Norland Products Inc. www.norlandprod.com/adhesives/NOA%2061.html [2020-12-10]

  • 图 1  SQD光纤耦合方案

    Fig. 1.  Schemes of fiber coupling with SQDs.

    图 2  单模光纤粘合SQD微柱的收光模拟 (a) 静态腔场分布; (b)左: 腔内(inner)和顶部(top)的静态腔场强度; 右: 光纤提取效率随上DBR对数的变化. 同时列出共聚焦收光效率(空心点)作比较, (c) 模拟结构示意图

    Fig. 2.  Simulation of light collection from single mode fiber-bonded SQD micropillar: (a) Steady cavity field distribution; (b) Left: steady cavity mode intensity inside (inner) or on top of (top) the cavity; right: light extraction efficiency of fiber, as a function of the upper DBR pairs. Red hollow points: that of confocal setup for comparison; (c) schematic of the simulation structure.

    图 3  光纤耦合量子点单光子源的二阶关联函数测试装置

    Fig. 3.  Measurement setup of second-order correlation function of a fiber-coupled SQD single-photon source.

    图 4  光纤粘合SQD样品A的光谱. 分别在10和77 K下用高(红线)和低(黑线)激发功率测试; 插图: 滤光后的分束单路光谱和${g}^{2}(\tau)$及退卷积拟合(蓝线)

    Fig. 4.  Sample A of fiber coupled SQD, spectra measured at 10 and 77 K under high (red) and low (black) excitation powers. Insets: One-beam spectra after filtering and ${g}^{2}(\tau)$ with deconvoluted fitting (blue).

    图 5  光纤粘合SQD样品B (a)光谱(左)和${g}^{2}(\tau)$及退卷积拟合(右), 在10, 40和70 K下变激发功率测试(如蓝、红、黑线, 垂直平移以便显示; 虚线示意腔模; 虚线框示意QD1); (b)三个温度的滤光后光谱(1.1 μW激发功率测试); (c) 10 K温度下QD1的X/X*光谱双线细致结构、强度-激发功率依赖曲线, X显示劈裂, 如光谱峰拟合绿线; (d)退卷积$ {g}^{2}\left(\tau \right) $、滤光后APD实测光子计数率随激发功率的变化

    Fig. 5.  Sample B of fiber coupled SQD: (a) PL spectra (left) and ${g}^{2}(\tau)$ with deconvoluted fitting (right), measured at 10, 40 and 70 K with variable excitation power (i.e. blue, red and black, offset vertically for clarity; dash line indicates cavity mode, CM, dashed rectangular indicate QD1); (b) spectra after filtering at the three temperatures (measured under excitation power of 1.1 μW); (c) X/X* peak fine structure and intensity excitation power dependence, X shows splitting as the green spectral fittings indicate; (d) deconvoluted ${g}^{2}(\tau)$ and photon count rate at APDs after filtering, as a function of the excitation power.

    表 1  样品光纤输出单光子计数率汇总

    Table 1.  Summary of fiber output single photon count rate of the samples.

    样品及
    温度/K
    光谱峰值强度(面积)单光子计数率
    原光纤输出/s–1滤光后
    分束单路/s–1
    APD两路
    实测/(106 s–1)
    估算原光纤
    输出/(106 s–1)
    ${g}^{2}(0)$净单光子
    计数率/(106 s–1)
    A(10)28747(125205)1608(9911)0.041.30.101.2
    A(77)12611(626890)922(38097)0.134.30.054.1
    B(10)101360(1124015)7491(71768)0.329.20.705.0
    B(40)77800(2591945)9305(186679)0.8822.00.7012.0
    B(70)47840(3945870)6479(277165)1.1029.00.7016.0
    B(70a)15121(5604040)10045(406237)1.8847.00.8021.0
    注: 在激发功率2.4 μW下测试, 其他未标注的为在1.1 μW下测试.
    下载: 导出CSV
  • [1]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Hofling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [2]

    Pooley M A, Ellis D J P, Patel R B, Bennett A J, Chan K H A, Farrer I, Ritchie D A, Shields A J 2012 Appl. Phys. Lett. 100 211103Google Scholar

    [3]

    Feng L, Zhang M, Xiong X, Chen Y, Wu H, Li M, Guo G P, Guo G C, Dai D X, Ren X F 2019 npj Quant. Inform. 5 2Google Scholar

    [4]

    Lu L, Xia L, Chen Z, Chen L, Yu T, Tao T, Ma W, Pan Y, Cai X, Lu Y, Zhu S, Ma X 2020 npj Quant. Inform. 6 30Google Scholar

    [5]

    Paesani S, Borghi M, Signorini S, Maïnos A, Pavesi L, Laing A 2020 Nat. Commun. 11 2505Google Scholar

    [6]

    Wu R, Lin J, Wang M, Fang Z, Chu W, Zhang J, Zhou J, Cheng Y 2019 Opt. Lett. 44 4698Google Scholar

    [7]

    Qiang X, Zhou X, Wang J, Wilkes C M, Loke T, Gara S O, Kling L, Marshall G D, Santagati R, Ralph T C, Wang J B, O’Brien J L, Thompson M G, Matthews J C F 2018 Nat. Photonics 12 534Google Scholar

    [8]

    Najafi F, Mower J, Harris N C, Bellei F, Dane A, Lee C, Hu X, Kharel P, Marsili F, Assefa S, Berggren K K, Englund D 2015 Nat. Commun. 6 5873Google Scholar

    [9]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2016 Optica 3 1274Google Scholar

    [10]

    Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Res. Lett. 12 378Google Scholar

    [11]

    Lee C M, Lim H J, Schneider C, Maier S, Hofling S, Kamp M, Lee Y H 2015 Sci. Rep. 5 14309Google Scholar

    [12]

    Davanco M I, Rakher M T, Wegscheider W, Schuh D, Badolato A, Srinivasan K 2011 Appl. Phys. Lett. 99 121101Google Scholar

    [13]

    Chonan S, Kato S, Aoki T 2014 Sci. Rep. 4 4785Google Scholar

    [14]

    Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104Google Scholar

    [15]

    Muller A, Flagg E B, Metcalfe M, Lawall J, Solomon G S 2009 Appl. Phys. Lett. 95 173101Google Scholar

    [16]

    Gazzano O, Vasconcellos S M, Arnold C, Nowak A, Galopin E, Sagnes I, Lanco L, Lemaitre A, Senellart P 2013 Nat. Commun. 4 1425Google Scholar

    [17]

    Ding X, He Y M, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401Google Scholar

    [18]

    Li S L, Chen Y, Shang X J, Yu Y, Yang J W, Huang J H, Su X B, Shen J X, Sun B Q, Ni H Q, Su X L, Wang K Y, Niu Z C 2020 Nanoscale Res. Lett. 15 145Google Scholar

    [19]

    Shang X J, Ma B, Ni H Q, Chen Z S, Li S L, Chen Y, He X W, Su X L, Shi Y J, Niu Z C 2020 AIP Adv. 10 085126Google Scholar

    [20]

    Makhov I S, Panevin V Y, Sofronov A N, Firsov D A, Vorobjev L E, Vinnichenko M Y, Vasil'ev A P, Maleev N A 2017 Superlattices and Microstruct. 112 79Google Scholar

    [21]

    Typical Properties of Norland Optical Adhesive (NOA) 61, Norland Products Inc. www.norlandprod.com/adhesives/NOA%2061.html [2020-12-10]

  • [1] 沈杨翊, 戴玉, 孔新新, 赵思泽鹏, 张文喜. 收发望远镜参数对光纤激光测振仪测量分辨力的影响. 物理学报, 2025, 74(1): 014206. doi: 10.7498/aps.74.20240682
    [2] 曾莹, 佘彦超, 张蔚曦, 杨红. 纳米光纤-半导体量子点分子耦合系统中光孤子的存储与读取. 物理学报, 2024, 73(16): 164202. doi: 10.7498/aps.73.20240184
    [3] 段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究. 物理学报, 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [4] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [5] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [6] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [7] 石永强, 孔维龙, 吴仁存, 张文轩, 谭磊. 耗散耦合腔阵列耦合量子化腔场驱动三能级体系中的单光子输运. 物理学报, 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [8] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波. 物理学报, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [9] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [10] 汤益丹, 沈光地, 郭霞, 关宝璐, 蒋文静, 韩金茹. 带介质分布式Bragg反射镜结构高性能共振腔发光二极管的研究. 物理学报, 2012, 61(1): 018503. doi: 10.7498/aps.61.018503
    [11] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. 基于InAs单量子点的单光子干涉. 物理学报, 2011, 60(3): 037809. doi: 10.7498/aps.60.037809
    [12] 曾祥楷, 饶云江. Bragg光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597
    [13] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [14] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪. 物理学报, 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [15] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [16] 李文平, 张雅鑫, 刘盛纲, 刘大刚. 特殊三反射镜太赫兹波段准光腔回旋管的动力学理论. 物理学报, 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
    [17] 钟东洲, 夏光琼, 王 飞, 吴正茂. 基于光反馈的单向耦合注入垂直腔表面发射激光器的矢量混沌同步特性研究. 物理学报, 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
    [18] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [19] 吕 明, 徐少辉, 张松涛, 何 钧, 熊祖洪, 邓振波, 丁训民. 基于多孔硅分布Bragg反射镜的有机微腔的光学性质. 物理学报, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
    [20] 李亚君. 积分球出光窗上照度分布均匀性的研究. 物理学报, 1980, 29(3): 296-304. doi: 10.7498/aps.29.296
计量
  • 文章访问数:  6889
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2020-12-15
  • 上网日期:  2021-04-02
  • 刊出日期:  2021-04-20

/

返回文章
返回