搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对偶单元法的三维集成微系统电热耦合分析

曹明鹏 吴晓鹏 管宏山 单光宝 周斌 杨力宏 杨银堂

引用本文:
Citation:

基于对偶单元法的三维集成微系统电热耦合分析

曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂

Electrothermal coupling analysis of three-dimensional integrated microsystem based on dual cell method

Cao Ming-Peng, Wu Xiao-Peng, Guan Hong-Shan, Shan Guang-Bao, Zhou Bin, Yang Li-Hong, Yang Yin-Tang
PDF
HTML
导出引用
  • 随着三维集成微系统集成度和功率密度的提高, 同时考察电设计与热管理的多场耦合分析势在必行. 本文面向三维集成微处理器系统, 通过改进的对偶单元法(dual cell method, DCM)实现了系统的快速电热分析. 该方法通过引入泄漏功率、材料系数随温度的耦合, 相比于传统有限元法在更新以及组装本构矩阵上有更大的优势. 仿真验证表明, 本文所采用的算法相比传统有限元法仿真速度提升了约30%. 在考虑了材料系数以及泄露功率热耦合因素后, 系统热点温度相对于考虑耦合前上升了20.8 K. 最后采用本文所提出算法对三维集成微处理器系统进行布局研究, 比较了硅通孔阵列常规布局和集中布局在处理器核心下方两种布局方式对上下层芯片热点温度的影响, 研究了功率不均匀分配对两种布局的影响.
    With the improvement of the integration and power density of three-dimensional integrated microsystem, it is imperative to simultaneously investigate the multi-field coupling analysis of electrical design and thermal management. This paper is to investigate a three-dimensional integrated microprocessor system and realize the rapid electrothermal analysis of the system through an improved dual cell method (DCM). This method decomposes the constitutive matrix into a constant matrix and a temperature-dependent matrix by introducing the coupling of leakage power and material coefficients with temperature. In the calculation, only the temperature-dependent matrix needs to be updated and assembled, which makes the calculation speed faster than the traditional finite element method. The simulation results show that the speed of the proposed algorithm is improved by about 30% compared with that of the traditional finite element method. After considering the thermal coupling factors of material coefficient and leakage power, the hot spot temperature of the system increases by 20.8 K compared with before coupling. Finally, the algorithm proposed in this paper is used to study the layout of three-dimensional integrated microprocessor system. The influence of TSV array conventional layout and centralized layout under the processor core(core-layout) on the hot spot temperature of upper and lower chips are compared, and the influences of uneven power distribution on the two layouts are studied. The results show that compared with the conventional layout of TSV array, the core-layout can reduce the hot spot temperature of processor, but it will aggravate the hot spot problem of DRAM at the same time. And when the power is not evenly distributed on the four cores, the hot spot of DRAM under the core-layout will be more seriously affected. In conclusion, the algorithm model proposed in this paper can quickly analyze the electrothermal coupling problem of 3D integrated microsystem, realize the hot spot prediction of the system, and provide theoretical guidance for designing the chip layout of 3D integrated microsystem.
      通信作者: 吴晓鹏, xpwu@mail.xidian.edu.cn
    • 基金项目: 国防基础科学研究计划(国防科工局稳定支持基金) (批准号: 614280620200201)、国家自然科学基金(批准号: 62074121, 62034002)、陕西省自然科学基金(批准号: 2019GY-010)、陕西省教育厅科研计划(批准号: 20JY018)和中央高校基本科研业务费专项资金(批准号: XJS191101, XJS191106)资助的课题
      Corresponding author: Wu Xiao-Peng, xpwu@mail.xidian.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (the Stability Support Fund of the State Administration of Science, Technology and Industry for National Defense) (Grant No. 614280620200201), the National Natural Science Foundation of China (Grant Nos. 62074121, 62034002), the Natural Science Foundation of Shaanxi Province, China(Grant No. 2019GY-010), Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 20JY018), and the Fundamental Research Funds for the Central Universities (Grant Nos. XJS191101, XJS191106)
    [1]

    Benkart P, Kaiser A, Munding A, Bschorr M, Pfleiderer H J, Kohn E, Heittmann A, Huebner H, Ramacher U 2005 IEEE Des. Test Comput. 22 512Google Scholar

    [2]

    P op, E 2010 Nano Res. 3 147Google Scholar

    [3]

    Li S, Ahn J H, Strong R D, Brockman J B, Tullsen D M, Jouppi N P 2010 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) New York, United states, December 12–16, 2009 p469

    [4]

    Wang X P, Yin W Y, He S 2010 IEEE Trans. Electron Devices 57 1382Google Scholar

    [5]

    冯永平, 崔俊芝, 邓明香 2009 物理学报 58 327Google Scholar

    Feng Y P, Cui J Z, Deng M X 2009 Acta Phys. Sin. 58 327Google Scholar

    [6]

    Xie J Y, Swaminathan M 2014 IEEE Trans. Compon. Pack. Manuf. Technol. 4 588Google Scholar

    [7]

    Lu T J, Jin J M 2014 IEEE Trans. Compon. Pack. Manuf. Technol. 4 1684Google Scholar

    [8]

    Sai M P D, Yu H, Shang Y, Tan C S 2013 IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 32 1734Google Scholar

    [9]

    王存海, 郑树, 张欣欣 2020 物理学报 69 034401Google Scholar

    Wang C H, Zheng S, Zhang X X 2020 Acta Phys. Sin. 69 034401Google Scholar

    [10]

    Wang D W, Zhao W S, Chen W C, Zhu G D, Xie H, Gao P Q, Yin W Y 2019 IEEE Trans. Electron Devices 66 5117Google Scholar

    [11]

    柴泾睿 2019 博士学位论文 (西安: 西安电子科技大学)

    Chai J R 2019 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [12]

    Lin S G, Chrysler R, Mahajan V K.De K, Banerjee K 2007 IEEE Trans. Electron Devices 54 3342Google Scholar

    [13]

    Lin S G, Chrysler R, Mahajan V K.De K, Banerjee K 2007 IEEE Trans. Electron Devices 54 3351Google Scholar

    [14]

    Pi Y D, Wang N Y, Chen J, Miao M, Jin Y F, Wang W 2018 Int. J. Heat Mass Transfer 120 361Google Scholar

    [15]

    Chai J R, Dong G, Yang Y T 2019 IEEE Trans. Electron Devices 66 1032Google Scholar

    [16]

    Wang H, Wan J C, Tan S, Zhang C, Tang H, Yuan Y, Huang K H, Zhang Z H 2018 IEEE Trans. Comput. 67 617Google Scholar

    [17]

    Alotto P, Freschi F, Repetto M, Rosso C 2013 The Cell Method for Electrical Engineering and Multiphysics Problems (Berlin-Heidelberg: Springer-Verlag) pp11−113

    [18]

    Tonti E 2001 CMES-Comput. Model. Eng. Sci. 2 237Google Scholar

    [19]

    Freschi F, Giaccone L, Repetto M 2008 Compel-Int. J. Comput. Math. Electr. Electron. Eng. 27 1343Google Scholar

    [20]

    Alotto P, Freschi F, Repetto M 2010 IEEE Trans. Magn. 46 2959Google Scholar

    [21]

    Zhang Y, Sarvey T E, Bakir M S 2014 2014 International 3D Systems Integration Conference (3DIC) Kinsdale, Ireland, December 1–3, 2014 p14

    [22]

    Ma H, Yu D Q, Wang J 2014 Microelectron. Reliab. 54 425Google Scholar

    [23]

    Tavakkoli F, Ebrahimi S, Wang S, Vafai K 2016 Int. J. Heat Mass Transfer 97 337Google Scholar

    [24]

    Ren Z, Alqahtani A, Bagherzadeh N, Lee J 2020 IEEE Trans. Compon. Pack. Manuf. Technol. 4 599Google Scholar

  • 图 1  DCM求解传热问题流程图

    Fig. 1.  Flow chart of DCM solving heat transfer problem.

    图 2  对偶单元构建过程

    Fig. 2.  The process of dual unit construction.

    图 3  迭代算法流程图

    Fig. 3.  Flow chart of Iteration scheme.

    图 4  三维集成微处理器系统结构示意图

    Fig. 4.  Schematic diagram of the three-dimensional integrated microprocessor system.

    图 5  工作区域分布图 (a) DRAM芯片; (b) Intel i7处理器芯片

    Fig. 5.  Work area distribution map: (a) DRAM; (b) processor.

    图 6  不考虑耦合与考虑耦合时芯片温度分布 (a) DRAM; (b) 处理器

    Fig. 6.  Chip temperature distribution without considering coupling and considering coupling: (a) DRAM; (b)processor.

    图 7  两种不同的TSV阵列布局 (a) 常规布局; (b) Core-布局

    Fig. 7.  Two different TSV array layouts: (a) Conventional layout; (b) core layout.

    图 8  两种不同TSV阵列布局时处理器的温度分布

    Fig. 8.  Temperature distributions of processors with two different TSV arrays.

    图 9  Core-布局时DRAM温度分布图

    Fig. 9.  DRAM temperature distributions in core-layout.

    图 10  典型Core功率分配情况

    Fig. 10.  Typical core power allocation.

    图 11  不同功率分配下处理器芯片最高温度

    Fig. 11.  Maximum temperature of processor chip under different power allocation.

    图 12  不同功率分配下DRAM芯片最高温度

    Fig. 12.  Maximum temperature of DRAM chip under different power allocation.

    表 1  FEM与改进DCM的仿真时间对比

    Table 1.  Simulation time comparison between FEM and improved DCM.

    耦合情况仿真方法仿真时间仿真自由度
    不考虑耦合FEM60 S416941
    改进DCM55.3 S
    电热耦合FEM154 S
    改进DCM104.7 S
    下载: 导出CSV

    表 2  不同功率分配时仿真时间

    Table 2.  Improving simulation time of DCM and FEM with different power allocation.

    布局方式改进的DCM法仿真时间/sFEM平均时间/s自由度
    Case1Case2Case3Case4Case5Case6
    常规布局105.6106.1106.0105.7107.2104.8152.2416941
    Core布局100.9105.6102.6101.4101.9100.3144.9404345
    下载: 导出CSV

    表 3  不同功率分配下Core-布局相比于常规布局的芯片温度变化

    Table 3.  Chip temperature change of core layout compared with conventional layout under different power allocation.

    温度变化均匀Case1Case2Case3Case4Case5Case6
    处理器降温/K2.202.822.252.252.823.132.90
    DRAM升温/K4.296.695.776.126.097.837.88
    下载: 导出CSV
  • [1]

    Benkart P, Kaiser A, Munding A, Bschorr M, Pfleiderer H J, Kohn E, Heittmann A, Huebner H, Ramacher U 2005 IEEE Des. Test Comput. 22 512Google Scholar

    [2]

    P op, E 2010 Nano Res. 3 147Google Scholar

    [3]

    Li S, Ahn J H, Strong R D, Brockman J B, Tullsen D M, Jouppi N P 2010 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) New York, United states, December 12–16, 2009 p469

    [4]

    Wang X P, Yin W Y, He S 2010 IEEE Trans. Electron Devices 57 1382Google Scholar

    [5]

    冯永平, 崔俊芝, 邓明香 2009 物理学报 58 327Google Scholar

    Feng Y P, Cui J Z, Deng M X 2009 Acta Phys. Sin. 58 327Google Scholar

    [6]

    Xie J Y, Swaminathan M 2014 IEEE Trans. Compon. Pack. Manuf. Technol. 4 588Google Scholar

    [7]

    Lu T J, Jin J M 2014 IEEE Trans. Compon. Pack. Manuf. Technol. 4 1684Google Scholar

    [8]

    Sai M P D, Yu H, Shang Y, Tan C S 2013 IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 32 1734Google Scholar

    [9]

    王存海, 郑树, 张欣欣 2020 物理学报 69 034401Google Scholar

    Wang C H, Zheng S, Zhang X X 2020 Acta Phys. Sin. 69 034401Google Scholar

    [10]

    Wang D W, Zhao W S, Chen W C, Zhu G D, Xie H, Gao P Q, Yin W Y 2019 IEEE Trans. Electron Devices 66 5117Google Scholar

    [11]

    柴泾睿 2019 博士学位论文 (西安: 西安电子科技大学)

    Chai J R 2019 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [12]

    Lin S G, Chrysler R, Mahajan V K.De K, Banerjee K 2007 IEEE Trans. Electron Devices 54 3342Google Scholar

    [13]

    Lin S G, Chrysler R, Mahajan V K.De K, Banerjee K 2007 IEEE Trans. Electron Devices 54 3351Google Scholar

    [14]

    Pi Y D, Wang N Y, Chen J, Miao M, Jin Y F, Wang W 2018 Int. J. Heat Mass Transfer 120 361Google Scholar

    [15]

    Chai J R, Dong G, Yang Y T 2019 IEEE Trans. Electron Devices 66 1032Google Scholar

    [16]

    Wang H, Wan J C, Tan S, Zhang C, Tang H, Yuan Y, Huang K H, Zhang Z H 2018 IEEE Trans. Comput. 67 617Google Scholar

    [17]

    Alotto P, Freschi F, Repetto M, Rosso C 2013 The Cell Method for Electrical Engineering and Multiphysics Problems (Berlin-Heidelberg: Springer-Verlag) pp11−113

    [18]

    Tonti E 2001 CMES-Comput. Model. Eng. Sci. 2 237Google Scholar

    [19]

    Freschi F, Giaccone L, Repetto M 2008 Compel-Int. J. Comput. Math. Electr. Electron. Eng. 27 1343Google Scholar

    [20]

    Alotto P, Freschi F, Repetto M 2010 IEEE Trans. Magn. 46 2959Google Scholar

    [21]

    Zhang Y, Sarvey T E, Bakir M S 2014 2014 International 3D Systems Integration Conference (3DIC) Kinsdale, Ireland, December 1–3, 2014 p14

    [22]

    Ma H, Yu D Q, Wang J 2014 Microelectron. Reliab. 54 425Google Scholar

    [23]

    Tavakkoli F, Ebrahimi S, Wang S, Vafai K 2016 Int. J. Heat Mass Transfer 97 337Google Scholar

    [24]

    Ren Z, Alqahtani A, Bagherzadeh N, Lee J 2020 IEEE Trans. Compon. Pack. Manuf. Technol. 4 599Google Scholar

  • [1] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁. 物理学报, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [2] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [3] 许炜炜, 白明珠, 林强, 胡正珲. 基于个性化三维心脏-躯干模型的心磁正问题. 物理学报, 2019, 68(17): 178702. doi: 10.7498/aps.68.20190387
    [4] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [5] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [6] 董伟, 王志斌. 改进型混合表面等离子体微腔激光器的研究. 物理学报, 2018, 67(19): 195204. doi: 10.7498/aps.67.20180242
    [7] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用. 物理学报, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [8] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [9] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [10] 肖金标, 李文亮, 夏赛赛, 孙小菡. 梯形截面硅基水平多槽纳米线定向耦合器全矢量分析. 物理学报, 2012, 61(12): 124216. doi: 10.7498/aps.61.124216
    [11] 谢子健, 胡作启, 王宇辉, 赵旭. 相变存储单元RESET多值存储过程的数值仿真研究. 物理学报, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [12] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [13] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [14] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [16] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [17] 郑 凯, 常德远, 傅永军, 魏 淮, 延凤平, 简 伟, 简水生. 掺铒孔辅助导光光纤的特性研究与优化设计. 物理学报, 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [18] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析. 物理学报, 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [19] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [20] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
计量
  • 文章访问数:  5752
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-11-06
  • 上网日期:  2021-03-26
  • 刊出日期:  2021-04-05

/

返回文章
返回