搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于晶向优化和Sn合金化技术的一种2.45 G弱能量微波无线输能用Ge基肖特基二极管

宋建军 张龙强 陈雷 周亮 孙雷 兰军峰 习楚浩 李家豪

引用本文:
Citation:

基于晶向优化和Sn合金化技术的一种2.45 G弱能量微波无线输能用Ge基肖特基二极管

宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪

A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology

Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao
PDF
HTML
导出引用
  • 肖特基二极管是2.45 G弱能量密度无线能量收集系统的核心器件, 其性能决定了系统整流效率的上限. 从材料设计角度出发, 利用晶向优化技术和Sn合金化技术, 提出并设计了一种大有效质量、大亲和能和高电子迁移率的Ge基复合半导体. 在此基础上, 进一步利用器件仿真工具, 设定合理的器件材料物理参数与几何结构参数, 实现了一种2.45 G弱能量微波无线输能用Ge基肖特基二极管. 基于该器件SPICE模型的ADS整流电路仿真表明: 与传统Ge肖特基二极管相比, 该新型Ge基肖特基二极管在输入能量为–10— –20 dBm的弱能量工作区域, 能量转换效率提升约10%. 本文技术方案及相关结论, 可为解决2.45 G弱能量密度无线能量收集系统整流效率低的问题提供有益的参考.
    With the development of modern communication technology, unlimited energy harvesting technology has become more and more popular. Among them, the weak energy density wireless energy harvesting technology has broken through the limitations in traditional transmission lines and can use the “waste” energy in the environment, which has become very popular. The Schottky diode is the core device of the 2.45 G weak energy density wireless energy harvesting system, and its performance determines the upper limit of the system's rectification efficiency. From the material design point of view, using crystal orientation optimization technology and Sn alloying technology, we propose and design a Ge-based compound semiconductor with large effective mass, large affinity, and high electron mobility. On this basis, the device simulation tool is further used to set reasonable device material physical parameters and geometric structure parameters, and a Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission is realized. The simulation of the ADS rectifier circuit based on the SPICE model of the device shows that comparing with the conventional Schottky diode, the turn-on voltage of the device is reduced by about 0.1 V, the zero-bias capacitance is reduced by 6 fF, and the reverse saturation current is also significantly increased. At the same time, the designed new Ge-based Schottky diode is used as the core rectifier device to simulate the rectifier circuit. The results show that the new-style Ge-based Schottky diode is in the weak energy working area with input energy in a range of –10 — –20 dBm. The energy conversion efficiency is increased by about 10%. The technical solutions and relevant conclusions of this article can provide a useful reference for solving the problem of low rectification efficiency of the 2.45 G weak energy density wireless energy harvesting system.
      通信作者: 宋建军, jianjun_79_81@xidian.edu.cn
    • 基金项目: 高等学校学科创新引智计划(批准号: B12026)资助的课题
      Corresponding author: Song Jian-Jun, jianjun_79_81@xidian.edu.cn
    • Funds: Project supported by the National 111 Center (Grant No. B12026)
    [1]

    李妤晨, 陈航宇, 宋建军 2020 物理学报 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [2]

    De S C, Meneghini M, Caria A, Dogmus E, Zegaoui M, Medjdoub F, Kalinic B, Cesca T, Meneghesso G, Zanoni E 2018 Mater. Today 11 153

    [3]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [4]

    Chen Y S, Chiu C W 2018 Int. J. RF Microwave Comput. Aided Eng. 28 1

    [5]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans. Microwave Theory Tech. 66 2433Google Scholar

    [6]

    Wonwoo L, Yonghee J 2018 Micromachines. 10 12Google Scholar

    [7]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans. Antennas Propag. 63 3486Google Scholar

    [8]

    Hemour S, Zhao Y P, Lorenz C H P, Houssameddine D, Gui Y S, Hu C M, Wu K 2014 IEEE Trans. Microwave Theory Tech. 62 965Google Scholar

    [9]

    Abdelmalek B, Fedoua D, Ilyas B 2019 Wirel. Netw. 25 3029Google Scholar

    [10]

    Zheng S Y, Liu W J, Pan Y M 2019 IEEE Trans. Ind. Inf. 15 3334Google Scholar

    [11]

    Cansiz M, Altinel D, Kurt G K 2019 Energy Technol. 174 292

    [12]

    Liu W F, Wang Y Y, Song J J 2020 Superlattices Microstruct. 28 106639

    [13]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 110−113页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130−142 (in Chinese)

    [14]

    Yang W, Song J J, Hu H Y, Zhang H M 2018 J. Nanoelectron. Optoelectron. 13 986Google Scholar

    [15]

    杨雯, 宋建军, 任远, 张鹤鸣 2018 物理学报 67 198502Google Scholar

    Yang W, Song J J, Ren Y, Zhang H M 2018 Acta Phys. Sin. 67 198502Google Scholar

    [16]

    Yang W, Song J J, Miao Y H, Zhang J, Dai X Y 2019 Sci. Technol. Adv. Mater. 11 1315

    [17]

    Zhai X, Song J J, Dai X Y 2019 IEEE Access 7 127438Google Scholar

    [18]

    Wirths S, Geiger R, Driesch V D N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [19]

    Zhai X, Song J J, Dai X Y, Zhao T L 2020 Semicond. Sci. Technol. 35 085026Google Scholar

    [20]

    Amato M, Bertocchi M, Ossicini S 2016 J. Phys. D: Appl. Phys. 119 085705Google Scholar

    [21]

    Minnie M, Rajeev K S, Charita M 2020 Mater. Today 28 1445

    [22]

    Huang W Q, Cheng B W, Xue C L, Li C B 2014 Physica B 443 43Google Scholar

  • 图 1  (a) 微波无线能量传输系统; (b) 典型肖特基二极管示意图

    Fig. 1.  (a) Microwave wireless energy transmission system; (b) schematic diagram of a typical Schottky diode.

    图 2  (001), (101), (111)剖面任意晶向电子电导率有效质量(极坐标系下)[14]

    Fig. 2.  (001), (101), (111) cross-section arbitrary crystal orientation electron conductivity effective mass (in polar coordinate system)[14].

    图 3  Sn合金化致Ge带隙类型转变示意图[19]

    Fig. 3.  Schematic diagram of Ge band gap type transition caused by Sn alloying[19].

    图 4  (100), (110), (111)晶面Ge半导体功函数[18,19]

    Fig. 4.  (100), (110), (111) crystal plane Ge semiconductor work function[18,19].

    图 5  (a) 新型SBD器件剖面示意图含层结构材料物理参数和几何结构参数; (b)传统SBD

    Fig. 5.  (a) The cross-sectional schematic diagram of the new SBD device contains the physical parameters and geometric structure parameters of the layered structure material; (b) the traditional SBD.

    图 6  新型SBD器件Silvaco仿真结构和网格设置截图

    Fig. 6.  A screenshot of the Silvaco simulation structure and grid settings of the new SBD device.

    图 7  不同厚度$\left\langle {100} \right\rangle $晶向Ge帽层新型SBD器件正向伏安特性曲线

    Fig. 7.  Forward V-J characteristic curve of new SBD device with different thickness $\left\langle {100} \right\rangle $ crystal orientation Ge cap layer.

    图 8  三种Ge基SBD器件伏安特性、电容特性仿真结果

    Fig. 8.  volt-ampere characteristic Capacitance-voltage characteristic simulation results of three Ge-based SBD devices.

    图 9  新型Ge基SBD器件击穿特性仿真结果

    Fig. 9.  Simulation results of the breakdown characteristics of the new Ge-based SBD device.

    图 10  新型Ge基SBD器件整流测试电路

    Fig. 10.  New Ge-based SBD device rectification test circuit.

    图 11  整流电路的仿真结果, 输入能量与 (a)阻抗实部、(b)阻抗虚部、(c)整流效率以及(d)弱能量区域整流效率的关系

    Fig. 11.  Simulation results of the rectifier circuit, the relationship between the input energy and (a) the real part of the impedance (b) the imaginary part of the impedance (c) the rectification efficiency (d) the rectification efficiency in the weak energy region.

    表 1  三种Ge基SBD器件SPICE参数表

    Table 1.  SPICE parameter table of three Ge-based SBD devices.

    参数$ {B}_{v}/ $V$ {C}_{j0} $/fF$ {E}_{\rm{G}} $/eV$ {I}_{\rm{S}} $/AN$ {R}_{\rm{S}} $/${\Omega }$M
    Ge18.9360.699.6235 × 10–110.9992.90.5072
    GeSn1936.20.699.628 × 10–110.9992.80.5073
    Ge_on_GeSn11.4300.691.0437 × 10–81.10611.60.4037
    下载: 导出CSV
  • [1]

    李妤晨, 陈航宇, 宋建军 2020 物理学报 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [2]

    De S C, Meneghini M, Caria A, Dogmus E, Zegaoui M, Medjdoub F, Kalinic B, Cesca T, Meneghesso G, Zanoni E 2018 Mater. Today 11 153

    [3]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [4]

    Chen Y S, Chiu C W 2018 Int. J. RF Microwave Comput. Aided Eng. 28 1

    [5]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans. Microwave Theory Tech. 66 2433Google Scholar

    [6]

    Wonwoo L, Yonghee J 2018 Micromachines. 10 12Google Scholar

    [7]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans. Antennas Propag. 63 3486Google Scholar

    [8]

    Hemour S, Zhao Y P, Lorenz C H P, Houssameddine D, Gui Y S, Hu C M, Wu K 2014 IEEE Trans. Microwave Theory Tech. 62 965Google Scholar

    [9]

    Abdelmalek B, Fedoua D, Ilyas B 2019 Wirel. Netw. 25 3029Google Scholar

    [10]

    Zheng S Y, Liu W J, Pan Y M 2019 IEEE Trans. Ind. Inf. 15 3334Google Scholar

    [11]

    Cansiz M, Altinel D, Kurt G K 2019 Energy Technol. 174 292

    [12]

    Liu W F, Wang Y Y, Song J J 2020 Superlattices Microstruct. 28 106639

    [13]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 110−113页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130−142 (in Chinese)

    [14]

    Yang W, Song J J, Hu H Y, Zhang H M 2018 J. Nanoelectron. Optoelectron. 13 986Google Scholar

    [15]

    杨雯, 宋建军, 任远, 张鹤鸣 2018 物理学报 67 198502Google Scholar

    Yang W, Song J J, Ren Y, Zhang H M 2018 Acta Phys. Sin. 67 198502Google Scholar

    [16]

    Yang W, Song J J, Miao Y H, Zhang J, Dai X Y 2019 Sci. Technol. Adv. Mater. 11 1315

    [17]

    Zhai X, Song J J, Dai X Y 2019 IEEE Access 7 127438Google Scholar

    [18]

    Wirths S, Geiger R, Driesch V D N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [19]

    Zhai X, Song J J, Dai X Y, Zhao T L 2020 Semicond. Sci. Technol. 35 085026Google Scholar

    [20]

    Amato M, Bertocchi M, Ossicini S 2016 J. Phys. D: Appl. Phys. 119 085705Google Scholar

    [21]

    Minnie M, Rajeev K S, Charita M 2020 Mater. Today 28 1445

    [22]

    Huang W Q, Cheng B W, Xue C L, Li C B 2014 Physica B 443 43Google Scholar

  • [1] 武鹏, 朱宏宇, 吴金星, 张涛, 张进成, 郝跃. 基于湿法腐蚀凹槽阳极的低漏电高耐压AlGaN/GaN肖特基二极管. 物理学报, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [2] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [4] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [5] 毕思涵, 宋建军, 张栋, 张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [6] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [7] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [8] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [10] 杜园园, 张春雷, 曹学蕾. 基于4H-SiC肖特基势垒二极管的射线探测器. 物理学报, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [11] 翟东媛, 赵毅, 蔡银飞, 施毅, 郑有炓. 沟槽形状对硅基沟槽式肖特基二极管电学特性的影响. 物理学报, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [12] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [13] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [14] 唐林峰, 王楠, 管强, 姚文静. 单晶合金激光熔凝过程中晶向对单晶完整性的影响. 物理学报, 2010, 59(11): 7941-7948. doi: 10.7498/aps.59.7941
    [15] 邹建华, 陶洪, 吴宏滨, 彭俊彪. 修饰阴极界面提高聚合物白光二极管发光效率. 物理学报, 2009, 58(2): 1224-1228. doi: 10.7498/aps.58.1224
    [16] 王艳新, 张琦锋, 孙 晖, 常艳玲, 吴锦雷. ZnO纳米线二极管发光器件制备及特性研究. 物理学报, 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [17] 杨丽侠, 杜 磊, 包军林, 庄奕琪, 陈晓东, 李群伟, 张 莹, 赵志刚, 何 亮. 60Co γ-射线辐照对肖特基二极管1/f噪声的影响. 物理学报, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [18] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [19] 邵式平. 某些锗隧道二极管的老化现象. 物理学报, 1965, 21(9): 1697-1699. doi: 10.7498/aps.21.1697
    [20] 沈学礎, 陈宁锵. 流体静压力对锗隧道二极管伏安特性的影响. 物理学报, 1964, 20(10): 1019-1026. doi: 10.7498/aps.20.1019
计量
  • 文章访问数:  4926
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2021-02-03
  • 上网日期:  2021-05-06
  • 刊出日期:  2021-05-20

/

返回文章
返回