-
原子及近原子尺度制造在近年来一直是物质科学领域被广泛探讨的前沿问题. 当制造和加工的尺度从微米、纳米逐渐走向原子级别时, 材料在常规尺度下所具备的性质已无法通过经典理论进行解释, 相反地, 会在这一尺度下展现出一系列新奇的特性. 因而对材料极限制造尺度和颠覆性物性的不断追求始终是科学界共同关注的重点领域. 作为一种在纳米尺度下对结构制造单元进行精细操控的先进手段, DNA纳米技术的开发和发展为纳米制造甚至原子制造提供了新的观点和思路, 而DNA折纸术作为DNA纳米技术的重要组成部分, 正在凭借其在结构制造过程当中的高度可编程性成为纳米尺度下进行各类物质精准制造的独特的解决方案, 并可能为不同物质不同材料更小尺度和任意形状的精准构筑带来机遇. 本文首先简单概述了DNA折纸术的基本原理和发展历程, 然后根据制造策略的不同对DNA折纸结构的纳米制造的相关代表性工作做了总结, 并在文末提出了对于DNA折纸结构在原子制造中的可行性的思考和未来发展方向的展望.Atomic and atom-like manufacturing has thoroughly investigated by researchers from physical science and materials science in recent years. Several novel properties which cannot be explained by classical theories can be revealed by materials in the case of the manufacturing scale progressing from micron and nanometer to atomic level gradually, so that researchers from related fields have shown the constant pursuit of ultimate manufacturing scales and subversive properties. As an advanced method of precisely manipulating the structural units on a nanoscale, DNA nanotechnology has brought a new insight into nano/atomic manufacturing during its evolution. Meanwhile, the DNA origami technique has proposed the solutions for the accurate fabrication of matters based on its remarkable programmability in design process and might create opportunities for precise construction under more minute scale and more arbitrary shape for multiple matters and materials. In this review, we first briefly summarize the fundamentals, evolutions and several representative researches of DNA origami technique, and then we further summarize some corresponding investigations of nano-fabrications based on the DNA origami structures according to the fabrication strategies. Finally, we put forward some considerations of the potential feasibility in utilizing DNA origami structures for atomic manufacturing and give some prospects for the future development of this field.
-
Keywords:
- DNA nanotechnology /
- DNA origami /
- nanomanufacturing /
- atomic manufacturing
[1] Seeman N C 1982 J. Theor. Biol. 99 237Google Scholar
[2] Rothemund P W 2006 Nature 440 297Google Scholar
[3] Douglas S M, Dietz H, Liedl T, Högberg B, Grag F, Shih W M 2009 Nature 459 41Google Scholar
[4] Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H 2011 Science 332 342Google Scholar
[5] Dietz H, Douglas S M, Shih W M 2009 Science 325 725Google Scholar
[6] Wei B, Dai M, Yin P 2012 Nature 485 623Google Scholar
[7] Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar
[8] Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar
[9] Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar
[10] Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y 2011 Angew. Chem. Int. Ed. 50 4176Google Scholar
[11] Hossen M M, Bendickson L, Palo P E, Yao Z, Nilsen-Hamilton M, Hillier A C 2018 Nanotechnology 29 355603Google Scholar
[12] Schreiber R, Kempter S, Holler S, Schüller V, Schiffels D, Simmel S S, Nickels P C, Liedl T 2011 Small 7 1795Google Scholar
[13] Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 1258361Google Scholar
[14] Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar
[15] Jia S, Wang J, Xie M, et al. 2019 Nat. Commun. 10 5597Google Scholar
[16] Li N, Shang Y X, Xu R, Jiang Q, Liu J B, Wang L, Cheng Z H, Ding B Q 2019 J. Am. Chem. Soc. 141 17968Google Scholar
[17] Shang Y X, Li N, Liu S B, Wang L, Wang Z G, Zhang Z, Ding B Q 2020 Adv. Mater. 32 2000294Google Scholar
[18] Cao H, Zheng M, Dong X, Jin F, Zhao Z, Duan X 2013 Appl. Phys. Lett. 102 201108Google Scholar
[19] Xing J, Zheng M, Duan X 2015 Chem. Soc. Rev. 44 5031Google Scholar
[20] Surwade S P, Zhao S, Liu H 2011 J. Am. Chem. Soc. 133 11868Google Scholar
[21] Diagne C T, Brun C, Gasparutto D, Baillin X, Tiron R 2016 ACS Nano 10 6458Google Scholar
[22] Shen B, Linko V, Tapio K, Pikker S, Lemma T, Gopinath A, Gothelf K V, Kostiainen M A, Toppari J J 2018 Sci. Adv. 4 eaap8978Google Scholar
-
图 1 DNA折纸结构 (a) DNA折纸结构设计原理示意图[1]; (b)一些典型的二维DNA折纸结构的原子力显微镜图片[1]; (c)基于蜂窝状设计策略的三维DNA折纸结构[3]; (d)带有曲面的DNA半球、球、椭球和花瓶结构[4]; (e)带有曲面的DNA框架结构[5]; (f)仅由短链组装而成的各种DNA brick结构[6]
Fig. 1. DNA origami structures: (a) Schematic illustration of design process of DNA origami structures[1]; (b) representative atomic force microscope (AFM) images of several 2-dimensional DNA origami structures[1]; (c) 3-dimensional DNA origami structures obtained by honeycomb design principle[3]; (d) DNA hemisphere, sphere, ellipsoid and nanoflask with curvatures[4]; (e) bent DNA origami wireframe structures[5]; (f) DNA brick structures which only composed of short oligonucleotides[6].
图 2 基于化学镀策略的DNA折纸结构的金属化 (a)单质金包覆的T型折纸结构[7]; (b)金属化的回路状DNA折纸结构[8]; (c)金属化的H形和双杠状结构[9]; (d)三角形折纸结构指定位置生长银纳米簇前(左)后(右)的AFM图[10]; (e)银金属化的DNA折纸三角片结构[11]; (f)单质金包覆的DNA折纸棒状结构[12]
Fig. 2. Metallization of DNA origami structures based on electroless plating strategy: (a) Au encapsulated branched DNA origami structures[7]; (b) metallized circuit-like DNA origami structures[8]; (c) H-shaped and parallel bars-shaped metallic nanostructures based on origami templates[9]; (d) AFM images before (left) and after (right) site-specific metallization on particular arms of triangular origami structures[10]; (e) Ag metallized DNA triangular origami structures[11]; (f) Au structures templated by DNA bundles structures[12].
图 3 利用DNA折纸结构作为模具定制形状任意的金属结构 (a)凭借DNA模具策略制备的长方体、三角形等不同形状的银纳米结构[13]; (b) DNA模具外壳介导的棒状单质金结构及金二聚体结构的制备[14]
Fig. 3. Artificially casting metallic structures with DNA origami mold strategy: (a) Synthesizing cuboid, triangular Ag nanostructures by the utilization of different shaped DNA origami molds[13]; (b) DNA mold shells mediated synthesis of rodlike and dimeric gold nanostructures[14].
图 4 基于功能化位点延伸策略的金属结构原位生长 (a) DNA折纸基板上8字形纳米电路的原位生长[15]; (b) DNA折纸三角形结构上不同种类金属结构的定位生长[16]; (c) DNA折纸基板上二氧化硅结构的图案化生长[17]
Fig. 4. In-situ fabrication of metallic structures based on the functional sites extension strategy: (a) In-situ synthesis of 8-patterned nano-circuit on DNA origami substrate[15]; (b) site-specific synthesis of varying metallic nanostructures on triangular DNA origami structures[16]; (c) patterned growth of silica on DNA origami structures[17].
图 5 基于类平板印刷术的人工金属结构的制备 (a)氟化氢蒸气浓度控制的二氧化硅基底上三角形凹槽和凸台结构的制备[20]; (b)以孔状DNA折纸结构为掩模板制备的高精度二氧化硅图案[21]; (c)基于平板印刷术对DNA折纸结构逐步复制制备等离子体金纳米结构[22]
Fig. 5. Fabrication of artificial metallic nanostructures based on the surficial lithography: (a) HF vapor moisture induced fabrication of silica trenches and ridges patterns[20]; (b) DNA origami mask mediated hole patterned silica fabrication with high precision[21]; (c) step-by-step lithographic fabrication of plasmonic nanostructures based on the duplication of DNA origami structures[22]
-
[1] Seeman N C 1982 J. Theor. Biol. 99 237Google Scholar
[2] Rothemund P W 2006 Nature 440 297Google Scholar
[3] Douglas S M, Dietz H, Liedl T, Högberg B, Grag F, Shih W M 2009 Nature 459 41Google Scholar
[4] Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H 2011 Science 332 342Google Scholar
[5] Dietz H, Douglas S M, Shih W M 2009 Science 325 725Google Scholar
[6] Wei B, Dai M, Yin P 2012 Nature 485 623Google Scholar
[7] Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar
[8] Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar
[9] Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar
[10] Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y 2011 Angew. Chem. Int. Ed. 50 4176Google Scholar
[11] Hossen M M, Bendickson L, Palo P E, Yao Z, Nilsen-Hamilton M, Hillier A C 2018 Nanotechnology 29 355603Google Scholar
[12] Schreiber R, Kempter S, Holler S, Schüller V, Schiffels D, Simmel S S, Nickels P C, Liedl T 2011 Small 7 1795Google Scholar
[13] Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 1258361Google Scholar
[14] Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar
[15] Jia S, Wang J, Xie M, et al. 2019 Nat. Commun. 10 5597Google Scholar
[16] Li N, Shang Y X, Xu R, Jiang Q, Liu J B, Wang L, Cheng Z H, Ding B Q 2019 J. Am. Chem. Soc. 141 17968Google Scholar
[17] Shang Y X, Li N, Liu S B, Wang L, Wang Z G, Zhang Z, Ding B Q 2020 Adv. Mater. 32 2000294Google Scholar
[18] Cao H, Zheng M, Dong X, Jin F, Zhao Z, Duan X 2013 Appl. Phys. Lett. 102 201108Google Scholar
[19] Xing J, Zheng M, Duan X 2015 Chem. Soc. Rev. 44 5031Google Scholar
[20] Surwade S P, Zhao S, Liu H 2011 J. Am. Chem. Soc. 133 11868Google Scholar
[21] Diagne C T, Brun C, Gasparutto D, Baillin X, Tiron R 2016 ACS Nano 10 6458Google Scholar
[22] Shen B, Linko V, Tapio K, Pikker S, Lemma T, Gopinath A, Gothelf K V, Kostiainen M A, Toppari J J 2018 Sci. Adv. 4 eaap8978Google Scholar
计量
- 文章访问数: 8331
- PDF下载量: 211
- 被引次数: 0