搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用钟跃迁谱线测量超稳光学参考腔的零温漂点

李婷 卢晓同 周驰华 尹默娟 王叶兵 常宏

引用本文:
Citation:

利用钟跃迁谱线测量超稳光学参考腔的零温漂点

李婷, 卢晓同, 周驰华, 尹默娟, 王叶兵, 常宏

Zero-crossing temperature of ultra-stable optical reference cavity measured by optical transition spectrum

Li Ting, Lu Xiao-Tong, Zhou Chi-Hua, Yin Mo-Juan, Wang Ye-Bing, Chang Hong
PDF
HTML
导出引用
  • 87Sr光晶格钟实验系统中, 通过将自由运转的698 nm激光频率锁定在由超低膨胀系数的玻璃材料构成的超稳光学参考腔上, 从而获得短期频率稳定性较好的超稳窄线宽激光. 超稳光学参考腔的腔长稳定性决定了最终激光频率的稳定度. 为了降低腔长对温度的敏感性, 使激光频率具有更好的稳定度和更小的频率漂移, 利用锶原子光晶格钟的钟跃迁谱线, 测量了698 nm超稳窄线宽激光系统中超稳光学参考腔的零温漂点. 通过对钟跃迁谱线中心频率随温度的变化曲线进行二阶多项式拟合, 得到698 nm超稳窄线宽激光系统的零温漂点为30.63 ℃. 利用锶原子光晶格钟的闭环锁定, 测得零温漂点处698 nm超稳窄线宽激光系统的线性频率漂移率为0.15 Hz/s, 频率不稳定度为1.6 × 10–15@3.744 s.
    In an experimental system of 87Sr atomic optical lattice clock, the free-running 698 nm diode laser is locked in an ultra-stable optical reference cavity to obtain the ultra-stable narrow linewidth laser with good short-term frequency stability. The ultra-stable optical reference cavity, which is usually composed of glass material doped with titanium dioxide for ultra-low thermal expansion coefficient and two highly reflective fused quartz mirrors, is called ULE cavity. The cavity length is prone to being affected by mechanical vibration, temperature change, airflow, etc. The stability of the cavity length determines the stability of the final laser frequency. Near the room temperature, there exists a special temperature point for the ultra-low expansion glass material, at which temperature its thermal expansion coefficient becomes zero, which is called the zero-crossing temperature. At the zero-crossing temperature, the length of the ULE cavity is not sensitive to the temperature fluctuation, reaching a minimum value, and the laser locked to the ULE cavity has a minimum frequency drift. In order to reduce the influence of temperature on the laser frequency instability, the zero-crossing temperature of the ultra-stable optical reference cavity of 698 nm ultra-stable narrow linewidth laser system is measured by using the clock transition spectrum of the strontium atomic optical lattice clock. The frequency drift and frequency instability of the 698 nm ultra-stable narrow linewidth laser system at zero-crossing temperature are measured by using the change of the in-loop locked clock frequency of strontium atomic optical lattice clock. By scanning the atomic clock transition frequencies at different temperatures, the clock transition spectra at different temperatures are obtained. The second order polynomial fitting of the central frequency of the clock transition spectrum with the change curve of temperature is carried out, and the zero-crossing temperature of the 698 nm ultra-stable narrow linewidth laser system ULE cavity is measured to be 30.63 ℃. At the zero-crossing temperature, the 698 nm ultra-stable narrow linewidth laser frequency is used for in-loop locking of 87Sr atomic optical lattice clock. The linear drift rate of the ULE cavity in the 698 nm ultra-stable narrow linewidth laser system is measured to be 0.15 Hz/s, and the frequency instability of the 698 nm ultra-stable narrow linewidth laser system is 1.6 × 10–15 at an average time of 3.744 s. The determination of ULE cavity zero-crossing temperature for the 698 nm ultra-stable narrow linewidth laser system is of great significance in helping to not only improve the instability of the laser system, but also increase the instability of 87Sr optical lattice clock system. In the future, we will improve the temperature control system of the ULE cavity in the 698 nm clock laser system, enhancing the temperature control accuracy of the ULE cavity and reducing the measurement error, thus achieving a more accurate zero-crossing temperature and further improving the frequency instability of the 698 nm ultra-stable narrow linewidth laser system.
      通信作者: 王叶兵, wangyebing@ntsc.ac.cn ; 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11803042, 61775220)、国家重点研发计划(批准号: 2016YFF0200201)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SSW-JSC004)和中国科学院青年创新促进会(批准号: 2019400)资助的课题
      Corresponding author: Wang Ye-Bing, wangyebing@ntsc.ac.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11803042, 61775220), the National Key R&D Program of China (Grant No. 2016YFF0200201), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2019400)
    [1]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [2]

    Blatt S, Ludlow A D, Campbell G K, et al. 2008 Phys. Rev. Lett. 100 140801Google Scholar

    [3]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [4]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [5]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [6]

    Wcisło P, Morzyński P, Bober M, Cygan A, Lisak D, Ciuryło R, Zawada M 2016 Nat. Astron. 1 0009

    [7]

    Hees A, Guéna J, Abgrall M, Bize S, Wolf P 2016 Phys. Rev. Lett. 117 061301Google Scholar

    [8]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat.Commun. 8 1195Google Scholar

    [9]

    Adhikari R X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [10]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [11]

    Fox R W 2008 Proc. SPIE, Photonics North 7099 70991RGoogle Scholar

    [12]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 5 158Google Scholar

    [13]

    Liu H, Jiang K L, Wang J Q, Xiong Z X, He L X, Lü B L 2018 Chin. Phys. B 27 053201Google Scholar

    [14]

    林弋戈, 方占军 2018 物理学报 67 160604Google Scholar

    Lin Y G, Fang Z J 2018 Acta Phys. Sin. 67 160604Google Scholar

    [15]

    Muller H, Peters A, Chu S 2010 Nature 463 926Google Scholar

    [16]

    Wang C, Ji Z, Gong T, et al. 2019 J. Phys. D: Appl. Phys. 52 455104Google Scholar

    [17]

    Thomas L, Thomas K, Uwe S 2010 J. Opt. Soc. Am. B 27 914Google Scholar

    [18]

    Zhang J, Luo Y X, Ouyang B, Deng K, Lu Z H, Luo J 2013 Eur. Phys. J. D 67 46Google Scholar

    [19]

    Berthold J W, Jacobs S F 1976 Appl. Opt. 15 2334

    [20]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [21]

    Lu X T, Yin M J, Li T, Wang Y B, Chang H 2020 Appl. Sci. 10 1440Google Scholar

    [22]

    高峰, 刘辉, 许鹏, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704Google Scholar

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704Google Scholar

    [23]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [24]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

  • 图 1  测量零温漂点的实验装置

    Fig. 1.  Schematic setup for zero-crossing temperature measurement.

    图 2  归一化钟跃迁谱线

    Fig. 2.  Normalized excitation spectra of clock transition.

    图 3  698 nm超稳窄线宽激光系统ULE腔零漂温点的测量

    Fig. 3.  Measurements at different controlled temperatures clock transition spectra.

    图 4  (a) 698 nm激光频率随时间的漂移; (b) 698 nm激光系统的频率不稳定度

    Fig. 4.  (a) 698 nm laser frequency drift with the time; (b) fractional frequency instability of the 698 nm laser.

  • [1]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [2]

    Blatt S, Ludlow A D, Campbell G K, et al. 2008 Phys. Rev. Lett. 100 140801Google Scholar

    [3]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [4]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [5]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [6]

    Wcisło P, Morzyński P, Bober M, Cygan A, Lisak D, Ciuryło R, Zawada M 2016 Nat. Astron. 1 0009

    [7]

    Hees A, Guéna J, Abgrall M, Bize S, Wolf P 2016 Phys. Rev. Lett. 117 061301Google Scholar

    [8]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat.Commun. 8 1195Google Scholar

    [9]

    Adhikari R X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [10]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [11]

    Fox R W 2008 Proc. SPIE, Photonics North 7099 70991RGoogle Scholar

    [12]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 5 158Google Scholar

    [13]

    Liu H, Jiang K L, Wang J Q, Xiong Z X, He L X, Lü B L 2018 Chin. Phys. B 27 053201Google Scholar

    [14]

    林弋戈, 方占军 2018 物理学报 67 160604Google Scholar

    Lin Y G, Fang Z J 2018 Acta Phys. Sin. 67 160604Google Scholar

    [15]

    Muller H, Peters A, Chu S 2010 Nature 463 926Google Scholar

    [16]

    Wang C, Ji Z, Gong T, et al. 2019 J. Phys. D: Appl. Phys. 52 455104Google Scholar

    [17]

    Thomas L, Thomas K, Uwe S 2010 J. Opt. Soc. Am. B 27 914Google Scholar

    [18]

    Zhang J, Luo Y X, Ouyang B, Deng K, Lu Z H, Luo J 2013 Eur. Phys. J. D 67 46Google Scholar

    [19]

    Berthold J W, Jacobs S F 1976 Appl. Opt. 15 2334

    [20]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [21]

    Lu X T, Yin M J, Li T, Wang Y B, Chang H 2020 Appl. Sci. 10 1440Google Scholar

    [22]

    高峰, 刘辉, 许鹏, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704Google Scholar

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704Google Scholar

    [23]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [24]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

  • [1] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [2] 周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波. 外尔超构材料里频率分离外尔点的数值设计. 物理学报, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [3] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [4] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [5] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测. 物理学报, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [6] 刘军, 陈帛雄, 许冠军, 崔晓旭, 白波, 张林波, 陈龙, 焦东东, 王涛, 刘涛, 董瑞芳, 张首刚. 高精细度光学参考腔的自主化研制. 物理学报, 2017, 66(8): 080601. doi: 10.7498/aps.66.080601
    [7] 张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙. 利用传输腔技术实现镱原子光钟光晶格场的频率稳定. 物理学报, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [8] 任立庆, 祝松, 许冠军, 王兆华, 邓仲勋, 魏迎春, 晋宏营, 李增生, 高静, 刘杰, 张林波, 董瑞芳, 刘涛, 李永放, 张首刚. 振动不敏感球形光学参考腔研究. 物理学报, 2014, 63(9): 090601. doi: 10.7498/aps.63.090601
    [9] 江永红, 孙卫国, 张燚, 付佳, 樊群超, 李会东, 冯灏. 用预言振转跃迁谱线的新公式研究AuO分子电子跃迁P支的高激发态发射谱线. 物理学报, 2013, 62(21): 213301. doi: 10.7498/aps.62.213301
    [10] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁. 物理学报, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [11] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用. 物理学报, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [12] 樊群超, 孙卫国, 李会东, 冯灏. CO电子基态P线系跃迁谱线的理论研究. 物理学报, 2011, 60(6): 063301. doi: 10.7498/aps.60.063301
    [13] 冉林松, 王红斌, 李向东, 张继彦, 程新路. Ti类氦Kα线在高温稠密等离子体中的漂移. 物理学报, 2009, 58(9): 6096-6100. doi: 10.7498/aps.58.6096
    [14] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [15] 牟致栋, 魏琦瑛. CuⅩⅧ离子谱线波长和跃迁概率的理论计算. 物理学报, 2005, 54(6): 2614-2619. doi: 10.7498/aps.54.2614
    [16] 汪 洪, 娄 平, 庄永河. 由流方程求解非零温条件下t-J模型能谱. 物理学报, 2005, 54(8): 3764-3767. doi: 10.7498/aps.54.3764
    [17] 徐涵, 常文蔚, 银燕. 尾波场中传播的激光脉冲的频率漂移. 物理学报, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [18] 张克明, 陈徐宗, 藏二军, 秋元義明, 笠原刚, 坂本和平, 稻场肇. 127)I2在633nm波段的超精细强谱线及稳频半导体激光器. 物理学报, 1999, 48(5): 840-849. doi: 10.7498/aps.48.840
    [19] 赵国忠, 潘少华. 半导体超晶格子带间跃迁的光学双稳. 物理学报, 1996, 45(6): 929-939. doi: 10.7498/aps.45.929
    [20] 欧发, 邓文基. 光学双稳性临界点的相变行为. 物理学报, 1990, 39(6): 90-97. doi: 10.7498/aps.39.90
计量
  • 文章访问数:  5367
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2020-12-03
  • 上网日期:  2021-03-29
  • 刊出日期:  2021-04-05

/

返回文章
返回