-
Over the last two decades, the grating-based phase-contrast imaging has aroused the interest of a number of researchers. It could provide an access to three complementary signals simultaneously: the conventional absorption contrast, the differential phase contrast related to refraction of incident wave, and the dark-field contrast that relates to ultra small angle scattering in a sample. The grating-based phase-contrast signals have higher contrast sensitivity for some types of soft samples than the absorption signals. Dark-field signals have better diagnostic effects in the detection of lung tumors, pneumothorax and the identification of microcalcifications in breast. There are two main phase retrieval methods in grating-based X-ray phase-contrast imaging, i.e. phase stepping method and Fourier transform method. The phase signals retrieved by phase stepping is high precise and has low noise. But the sample suffers high dose due to at least three exposures. The phase signals retrieved by Fourier transform is low-dose due to the fact that only one image with sample is needed, but it is easily affected by artifacts when the size of the filtering window is too large. However, when the size of the filtering window is too small, the high-frequency information of the phase-contrast image will be lost, and the image will become blurred. A trade-off between definitions of the image and artifacts should be made. Since the phase-contrast signal and the dark-field signal of the sample are modulated by carrier fringes, the frequency spectrum of the detected image consists of many different harmonics. The artifacts in the retrieved signals originate from the spectrum aliasing between primary peak around zero spatial frequency and first-order harmonic peaks. Therefore, the subtraction between two images with phase difference can remove the primary peak, and the artifacts in the phase-contrast signals and dark-field signals will be suppressed. In order to further suppress the artifacts, we increase the frequency of carrier fringes, which results in a larger distance between first-order harmonic peaks in frequency domain. We finally attain artifact-free phase-contrast images and dark-field images while maintaining high definition of the images. The method proposed here is not only applicable to incoherent imaging system, but also to Talbot-Lau interferometer, and it would be useful in fast and low-dose X-ray phase-contrast and dark-field imaging.
-
Keywords:
- X-ray phase-contrast imaging /
- Fourier transform /
- dark-field imaging
[1] David C, Nohammer E, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287Google Scholar
[2] Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar
[3] Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar
[4] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C, David C 2008 Nat. Mater. 7 134Google Scholar
[5] Bech M, Tapfer A, Pauwels B, Bruyndonckx P, Sasov A, Pfeiffer F 2013 Sci. Rep. 3 3209Google Scholar
[6] Anton G, Michel T, Pelzer G, Radicke M, Rieger J, Weber T 2013 Z. Med. Phys. 23 228Google Scholar
[7] Yang J, Guo J C, Lei Y H, Yi M H, Chen L 2017 Chin. Phys. B 26 028701Google Scholar
[8] Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E 2005 Opt. Express 13 6296Google Scholar
[9] Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156Google Scholar
[10] Wen H, Bennett E E, Hegedus M M, Carroll S C 2008 IEEE Trans. Med. Imaging 27 997Google Scholar
[11] Wen H, Bennett E E, Hegedus M M, Rapacchi S 2009 Radiology 251 910Google Scholar
[12] Lim H, Park Y, Cho H, Je U, Hong D, Park C, Woo T, Lee M, Kim J, Chung N, Kim J, Kim J 2015 Opt. Commun. 348 85Google Scholar
[13] Lim H W, Lee H W, Cho H S, Je U K, Park C K, Kim K S, Kim G A, Park S Y, Lee D Y, Park Y O, Woo T H, Lee S H, Chung W H, Kim J W, Kim J G 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 850 89Google Scholar
[14] Lim H, Lee H, Cho H, Seo C, Je U, Park C, Kim K, Kim G, Park S, Lee D, Kang S, Lee M 2017 J. Korean Phys. Soc. 71 722Google Scholar
[15] Seifert M, Gallersdörfer M, Ludwig V, Schuster M, Horn F, Pelzer G, Rieger J, Michel T, Anton G 2018 J. Imaging 4 62Google Scholar
[16] Seifert M, Ludwig V, Gallersdorfer M, Hauke C, Hellbach K, Horn F, Pelzer G, Radicke M, Rieger J, Sutter S M, Michel T, Anton G 2018 Phys. Med. Biol. 63 185010Google Scholar
[17] Li J, Su X Y, Guo L R 1990 Opt. Eng. 29 1439Google Scholar
[18] 陈文静, 苏显渝, 曹益平, 向立群 2004 中国激光 31 740Google Scholar
Chen W J, Su X Y, Cao Y P, Xiang L Q 2004 Chin. J. Las. 31 740Google Scholar
[19] Zhu P, Zhang K, Wang Z, Liu Y, Liu X, Wu Z, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. U. S. A. 107 13576Google Scholar
[20] Wang Z, Gao K, Ge X, Wu Z, Chen H, Wang S, Zhu P, Yuan Q, Huang W, Zhang K, Wu Z 2013 J. Phys. D: Appl. Phys. 46 494003Google Scholar
[21] 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨 2013 物理学报 62 06872Google Scholar
Yang D, Lei Y H, Liu X, Guo J C, Niu H B 2013 Acta Phys. Sin. 62 06872Google Scholar
[22] Momose A, Yashiro W, Takeda Y, Suzuki Y, Hattori T 2006 Jpn. J. Appl. Phys. 45 5254Google Scholar
-
表 1 两种不同傅里叶变换方法的定量比较
Table 1. Quantitative comparison between two kinds of Fourier transform algorithms.
背景相位
均值/rad背景相位标
准差/rad横截面峰
峰值/rad单幅图像
傅里叶变换0.3502 0.0059 0.2412 两幅图像
傅里叶变换0.2526 0.0017 0.1112 -
[1] David C, Nohammer E, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287Google Scholar
[2] Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar
[3] Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar
[4] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C, David C 2008 Nat. Mater. 7 134Google Scholar
[5] Bech M, Tapfer A, Pauwels B, Bruyndonckx P, Sasov A, Pfeiffer F 2013 Sci. Rep. 3 3209Google Scholar
[6] Anton G, Michel T, Pelzer G, Radicke M, Rieger J, Weber T 2013 Z. Med. Phys. 23 228Google Scholar
[7] Yang J, Guo J C, Lei Y H, Yi M H, Chen L 2017 Chin. Phys. B 26 028701Google Scholar
[8] Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E 2005 Opt. Express 13 6296Google Scholar
[9] Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156Google Scholar
[10] Wen H, Bennett E E, Hegedus M M, Carroll S C 2008 IEEE Trans. Med. Imaging 27 997Google Scholar
[11] Wen H, Bennett E E, Hegedus M M, Rapacchi S 2009 Radiology 251 910Google Scholar
[12] Lim H, Park Y, Cho H, Je U, Hong D, Park C, Woo T, Lee M, Kim J, Chung N, Kim J, Kim J 2015 Opt. Commun. 348 85Google Scholar
[13] Lim H W, Lee H W, Cho H S, Je U K, Park C K, Kim K S, Kim G A, Park S Y, Lee D Y, Park Y O, Woo T H, Lee S H, Chung W H, Kim J W, Kim J G 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 850 89Google Scholar
[14] Lim H, Lee H, Cho H, Seo C, Je U, Park C, Kim K, Kim G, Park S, Lee D, Kang S, Lee M 2017 J. Korean Phys. Soc. 71 722Google Scholar
[15] Seifert M, Gallersdörfer M, Ludwig V, Schuster M, Horn F, Pelzer G, Rieger J, Michel T, Anton G 2018 J. Imaging 4 62Google Scholar
[16] Seifert M, Ludwig V, Gallersdorfer M, Hauke C, Hellbach K, Horn F, Pelzer G, Radicke M, Rieger J, Sutter S M, Michel T, Anton G 2018 Phys. Med. Biol. 63 185010Google Scholar
[17] Li J, Su X Y, Guo L R 1990 Opt. Eng. 29 1439Google Scholar
[18] 陈文静, 苏显渝, 曹益平, 向立群 2004 中国激光 31 740Google Scholar
Chen W J, Su X Y, Cao Y P, Xiang L Q 2004 Chin. J. Las. 31 740Google Scholar
[19] Zhu P, Zhang K, Wang Z, Liu Y, Liu X, Wu Z, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. U. S. A. 107 13576Google Scholar
[20] Wang Z, Gao K, Ge X, Wu Z, Chen H, Wang S, Zhu P, Yuan Q, Huang W, Zhang K, Wu Z 2013 J. Phys. D: Appl. Phys. 46 494003Google Scholar
[21] 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨 2013 物理学报 62 06872Google Scholar
Yang D, Lei Y H, Liu X, Guo J C, Niu H B 2013 Acta Phys. Sin. 62 06872Google Scholar
[22] Momose A, Yashiro W, Takeda Y, Suzuki Y, Hattori T 2006 Jpn. J. Appl. Phys. 45 5254Google Scholar
计量
- 文章访问数: 5425
- PDF下载量: 71
- 被引次数: 0