搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同周期结构硅锗超晶格导热性能研究

刘英光 郝将帅 任国梁 张静文

引用本文:
Citation:

不同周期结构硅锗超晶格导热性能研究

刘英光, 郝将帅, 任国梁, 张静文

Thermal conductivities of different period Si/Ge superlattices

Liu Ying-Guang, Hao Jiang-Shuai, Ren Guo-Liang, Zhang Jing-Wen
PDF
HTML
导出引用
  • 构造了均匀、梯度、随机3种不同周期分布的硅/锗(Si/Ge)超晶格结构. 采用非平衡分子动力学(NEMD)方法模拟了硅/锗超晶格在3种不同周期分布下的热导率, 并研究了样本总长度和温度对热导率的影响. 模拟结果表明: 梯度和随机周期Si/Ge超晶格的热导率明显低于均匀周期结构超晶格; 在不同的周期结构下, 声子分别以波动和粒子性质输运为主; 均匀周期超晶格热导率具有显著的尺寸效应和温度效应, 而梯度、随机周期Si/Ge超晶格的热导率对样本总长度和温度的依赖性较小.
    Thermoelectric materials, which can convert wasted heat into electricity, have attracted considerable attention because they provide a solution to energy problems. The Si/Ge superlattices have shown tremendous promise as effective thermoelectric materials. The period lengths of the Si/Ge superlattices can effectively tailor the phonon's transport behaviors and control their thermal conductivities. In this paper, three kinds of Si/Ge superlattices with different period length distributions (uniform, gradient, random) are constructed. The non-equilibrium molecular dynamics (NEMD) method is used to calculate the thermal conductivities of Si/Ge superlattices under the different period length distributions. The effect of the sample’s total length and temperature on the superlattice's thermal conductivity are studied. The simulation result shows that the thermal conductivity of gradient and random periodical Si/Ge superlattices are significantly reduced at room temperature compared with that of the uniform period Si/Ge superlattices. Phonons are transported by wave or particle properties in the different periodical superlattices. The thermal conductivity of uniform period superlattices has an obvious size effect with the increasing of the sample total length. In contrast, the thermal conductivity of gradient, random periodical Si/Ge superlattices are weakly dependent on the sample’s total length. At the same time, temperature is an important factor affecting the heat transport properties. We find that the temperature affects the thermal conductivities of the three kinds of superlattices in different ways. With the increase of the temperature, (i) the thermal conductivity of uniform periodical superlattices shows an obvious temperature effect; (ii) the thermal conductivity of the gradient and random periodical Si/Ge superlattices are nearly unchanged due to the competition between phonon localization weakness and phonon-phonon scattering enhancement. In addition, the phonon densities of states of superlattices with three different periodical length distributions are calculated. We find that in the picture of uniform periodical Si/Ge superlattices, the number of pronounced peaks quickly decreases as the period length increases, particularly at higher frequencies. This indicates that as the period length increases, fewer coherent phonons will be formed over the superlattices. Moreover, the scattering mechanisms of phonons for gradient and random periodical Si/Ge superlattices are basically the same at 100 K and 500 K. These findings provide a developmental way to further reduce the thermal conductivity of superlattices.
      通信作者: 刘英光, liuyingguang@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52076080)、河北省自然科学基金(批准号: E2020502011)和中央高校基本科研究业务费(批准号: 2020MS105)资助的课题
      Corresponding author: Liu Ying-Guang, liuyingguang@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52076080), the Natural Science Foundation of Hebei Province, China(Grant No. E2020502011), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020MS105)
    [1]

    Martín-González M, Caballero-Calero O, Díaz-Chao P 2013 Renew. Sust. Energ. Rev. 24 288Google Scholar

    [2]

    Feng T L, Ruan X L, Ye Z, Cao B 2015 Phys. Rev. B 91 224301Google Scholar

    [3]

    Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Anag R 2018 Chin. Phys. B 27 047202Google Scholar

    [4]

    Wang K X, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Y E 2018 Chin. Phys. B 27 048401Google Scholar

    [5]

    郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程 2020 物理学报 69 146801Google Scholar

    Guo J Y, Chen S P, Fan W H, Wang Y N, Wu Y C 2020 Acta. Phys. Sin. 69 146801Google Scholar

    [6]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin 65 107201Google Scholar

    [7]

    Lin K H, Strachan A 2013 Phys. Rev. B 87 115302Google Scholar

    [8]

    Chen Y F, Li D Y, Lukes J R, Ni Z H, Chen M H 2005 Phys. Rev. B 72 174302Google Scholar

    [9]

    Giri A, Hopkins P E, Wessel J G, Duda J C 2015 J. Appl. Phys. 118 165303Google Scholar

    [10]

    Zhou K K, Xu N, Xie G F 2018 Chin. Phys. B 27 026501Google Scholar

    [11]

    Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar

    [12]

    Zhang C W, Zhou H, Zeng Y, Zheng L, Zhan Y L, Bi K D 2019 Int. J. Heat Mass Transf. 132 681Google Scholar

    [13]

    Samaraweera N, Larkin J M, Chan K L, Mithraratne K 2018 J. Appl. Phys. 123 244303Google Scholar

    [14]

    Juntunen T, Vanska O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar

    [15]

    Wang Y, Huang H X, Ruan X L 2014 Phys. Rev. B 90 165406Google Scholar

    [16]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar

    [18]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys.-X 3 1480417Google Scholar

    [19]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C-H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [20]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927Google Scholar

    [21]

    Maldovan M 2015 Nat. Mater. 14 667Google Scholar

    [22]

    Chernatynskiy A, Grimes R W, Zurbuchen M A, Clarke D R, Phillpot S R 2009 Appl. Phys. Lett. 95 161906Google Scholar

    [23]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101Google Scholar

    [24]

    Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 338 936Google Scholar

    [25]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [26]

    刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar

    Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar

    [27]

    Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar

    [28]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar

    [29]

    Zhang Z W, Chen Y P, Xie Y, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [30]

    Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar

    [31]

    Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar

  • 图 1  不同周期长度分布的超晶格 (a)均匀周期; (b)梯度周期; (c)随机周期

    Fig. 1.  The different period length distribution of superlattices: (a) Uniform period; (c) gradient period; (c) random period.

    图 2  NEMD模拟计算热性质的示意图

    Fig. 2.  Schematic diagram of the NEMD model for calculating the thermal properties.

    图 3  热导率与周期长度的关系

    Fig. 3.  Thermal conductivity of superlattice as a function of period length.

    图 4  不同平均周期长度的均匀超晶格的声子态密度.

    Fig. 4.  The phonon density of states of uniform superlattices with different average period lengths.

    图 5  热导率与样品总长度的关系

    Fig. 5.  Thermal conductivity of superlattice as a function of sample total length.

    图 6  超晶格热导率随温度的变化

    Fig. 6.  Thermal conductivity of superlattice as a function of temperature.

    图 7  超晶格的声子参与率

    Fig. 7.  The participation ratio of superlattices.

    图 8  超晶格不同温度条件下的声子态密度: (a) 梯度周期超晶格; (b) 随机周期超晶格

    Fig. 8.  The phonon density of states with different temperatures of superlattice: (a) Gradient period superlattice; (b) random.

  • [1]

    Martín-González M, Caballero-Calero O, Díaz-Chao P 2013 Renew. Sust. Energ. Rev. 24 288Google Scholar

    [2]

    Feng T L, Ruan X L, Ye Z, Cao B 2015 Phys. Rev. B 91 224301Google Scholar

    [3]

    Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Anag R 2018 Chin. Phys. B 27 047202Google Scholar

    [4]

    Wang K X, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Y E 2018 Chin. Phys. B 27 048401Google Scholar

    [5]

    郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程 2020 物理学报 69 146801Google Scholar

    Guo J Y, Chen S P, Fan W H, Wang Y N, Wu Y C 2020 Acta. Phys. Sin. 69 146801Google Scholar

    [6]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin 65 107201Google Scholar

    [7]

    Lin K H, Strachan A 2013 Phys. Rev. B 87 115302Google Scholar

    [8]

    Chen Y F, Li D Y, Lukes J R, Ni Z H, Chen M H 2005 Phys. Rev. B 72 174302Google Scholar

    [9]

    Giri A, Hopkins P E, Wessel J G, Duda J C 2015 J. Appl. Phys. 118 165303Google Scholar

    [10]

    Zhou K K, Xu N, Xie G F 2018 Chin. Phys. B 27 026501Google Scholar

    [11]

    Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar

    [12]

    Zhang C W, Zhou H, Zeng Y, Zheng L, Zhan Y L, Bi K D 2019 Int. J. Heat Mass Transf. 132 681Google Scholar

    [13]

    Samaraweera N, Larkin J M, Chan K L, Mithraratne K 2018 J. Appl. Phys. 123 244303Google Scholar

    [14]

    Juntunen T, Vanska O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar

    [15]

    Wang Y, Huang H X, Ruan X L 2014 Phys. Rev. B 90 165406Google Scholar

    [16]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar

    [18]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys.-X 3 1480417Google Scholar

    [19]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C-H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [20]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927Google Scholar

    [21]

    Maldovan M 2015 Nat. Mater. 14 667Google Scholar

    [22]

    Chernatynskiy A, Grimes R W, Zurbuchen M A, Clarke D R, Phillpot S R 2009 Appl. Phys. Lett. 95 161906Google Scholar

    [23]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101Google Scholar

    [24]

    Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A, Chen G 2018 Sci. Adv. 338 936Google Scholar

    [25]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [26]

    刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar

    Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar

    [27]

    Chen J, Zhang G, Li B W 2010 Nano Lett. 10 3978Google Scholar

    [28]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transf. 151 119395Google Scholar

    [29]

    Zhang Z W, Chen Y P, Xie Y, Zhang S B 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [30]

    Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592Google Scholar

    [31]

    Bodapati A, Schelling P K, Phillpot S R, Keblinski P 2006 Phys. Rev. B 74 245207Google Scholar

  • [1] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] 刘英光, 薛新强, 张静文, 任国梁. 基于界面原子混合的材料导热性能. 物理学报, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [3] 刘英光, 任国梁, 郝将帅, 张静文, 薛新强. 含有倾斜界面硅/锗超晶格的导热性能. 物理学报, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [4] 黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成. 双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响. 物理学报, 2018, 67(4): 040501. doi: 10.7498/aps.67.20171413
    [5] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [6] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [7] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [8] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [9] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [10] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究. 物理学报, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [11] 蒋雷, 王培吉, 张昌文, 冯现徉, 逯瑶, 张国莲. 超晶格SnO2掺Cr的电子结构和光学性质的研究. 物理学报, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [12] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [13] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [15] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响. 物理学报, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [16] 邓成良, 邵明珠, 罗诗裕. 带电粒子同超晶格的相互作用与系统的混沌行为. 物理学报, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [17] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [18] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [19] 顾培夫, 陈海星, 秦小芸, 刘 旭. 基于薄膜光子晶体超晶格理论的偏振带通滤波器. 物理学报, 2005, 54(2): 773-776. doi: 10.7498/aps.54.773
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  6998
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2020-11-16
  • 上网日期:  2021-03-29
  • 刊出日期:  2021-04-05

/

返回文章
返回