搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期场驱动下量子材料的非平衡物态

王恩 董文翰 周辉 刘猛 纪洪艳 孟胜 孙家涛

引用本文:
Citation:

周期场驱动下量子材料的非平衡物态

王恩, 董文翰, 周辉, 刘猛, 纪洪艳, 孟胜, 孙家涛

Nonequilibrium states in quantum materials under time-period driving

Wang En, Dong Wen-Han, Zhou Hui, Liu Meng, Ji Hong-Yan, Meng Sheng, Sun Jia-Tao
PDF
HTML
导出引用
  • 量子材料的拓扑物态的研究是当前凝聚态物理的重要前沿. 区别于局域对称性破缺对物质状态进行分类的传统方式, 量子物态可以用微观体系波函数的拓扑结构进行分类. 这些全新的拓扑物态有望颠覆传统的微电子学并进而推动拓扑电子学的迅猛发展. 当前大部分理论和实验研究集中于研究量子材料的平衡态性质. 周期性光场驱动下量子材料远离平衡态、而达到非平衡态时的拓扑物态近年来受到人们的广泛关注. 本文首先回顾周期场驱动下非平衡态的弗洛凯(Floquet)理论方法, 分别介绍无质量(如石墨烯)、有质量(如MoS2)等狄拉克费米子材料体系在远离平衡态下的拓扑物态, 利用光场与量子物态的相干耦合实现对量子材料非平衡物态的调控; 从原子制造角度出发, 光场诱导的相干声子态直接改变了量子材料中电子跃迁的大小, 进而调控量子材料的非平衡拓扑物态. 量子材料中丰富的声子态为非平衡拓扑物态的调控提供了更多的可能性. 最后, 文章展望了量子材料非平衡拓扑物态在超快相变以及瞬态物态调节等未来可能发展方向的应用.
    The topology of quantum materials is the frontier research in condensed matter physics. In contrast with the conventional classification of materials by using the local symmetry breaking criterion, the states of quantum systems are classified according to the topology of wave functions. The potential applications of topological states may lead the traditional microelectronics to break through and accelerate the significant improvement in topological electronics. Most of the recent studies focus on the topological states of quantum systems under equilibrium conditions without external perturbations. The topological states of quantum systems far from the equilibrium under time-periodic driving have attracted wide attention. Here we first introduce the framework of Floquet engineering under the frame of the Floquet theorem. The nonequilibrium topological states of massless and massive Dirac fermions are discussed including the mechanism of phase transition. Light field driven electronic transition term in the quantum material gains extra time-dependent phase. Thereby the manipulation of effective transition term of the electron is realized to regulate the non-equilibrium topological states. We also mention how the photoinduced coherent phonon affects the nonequilibrium topological states of quantum systems from the perspective of atom manufacturing. Furthermore, research outlook on the nonequilibrium topological states is given. This review provides some clues to the design of physical properties and transport behaviors of quantum materials out of equilibrium.
      通信作者: 孙家涛, jtsun@bit.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2020YFA0308800, 2016YFA0301204)、国家自然科学基金 (批准号: 11974045)、中国科学院战略先导研究计划 (批准号: XDB30000000) 和北京理工大学青年教师学术启动计划(批准号: 3050012222009)资助的课题
      Corresponding author: Sun Jia-Tao, jtsun@bit.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308800, 2016YFA0301204), the National Natural Science Foundation of China (Grant No. 11974045), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB30000000), and the Research Fund Program for Young Scholars of Beijing Institute of Technology, China (Grant No. 3050012222009)
    [1]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [2]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [3]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [4]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [5]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [6]

    Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H, Fang C 2019 Nature 566 475Google Scholar

    [7]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [8]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [9]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [10]

    Möller M M, Sawatzky G A, Franz M, Berciu M 2017 Nat. Commun. 8 1Google Scholar

    [11]

    Bi R, Yan Z, Lu L, Wang Z 2017 Phys. Rev. B 96 201305Google Scholar

    [12]

    Fang C, Weng H, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [13]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [14]

    Ali M N, Gibson Q, Jeon S, Zhou B B, Yazdani A, Cava R J 2014 Inorg. Chem. 53 4062Google Scholar

    [15]

    Chew A, Mross D F, Alicea J 2020 Phys. Rev. Lett. 124 096802Google Scholar

    [16]

    Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361Google Scholar

    [17]

    Frolov S M, Manfra M J, Sau J D 2020 Nat. Phys. 16 718Google Scholar

    [18]

    Senthil T 2015 Annu. Rev. Condens. Matter Phys. 6 299Google Scholar

    [19]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012Google Scholar

    [20]

    Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Yu, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A, Neupert T 2018 Nat. Phys. 14 918Google Scholar

    [21]

    Xue H, Yang Y, Gao F, Chong Y, Zhang B 2019 Nat. Mater. 18 108Google Scholar

    [22]

    Huang B, Wu Y H, Liu W V 2018 Phys. Rev. Lett. 120 110603Google Scholar

    [23]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402Google Scholar

    [24]

    Else D V, Nayak C 2016 Phys. Rev. B 93 201103Google Scholar

    [25]

    Roy R, Harper F 2017 Phys. Rev. B 96 155118Google Scholar

    [26]

    Leykam D, Rechtsman M C, Chong Y D 2016 Phys. Rev. Lett. 117 013902Google Scholar

    [27]

    Oka T, Aoki H 2009 Phys. Rev. B 79 081406Google Scholar

    [28]

    Gröning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar

    [29]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [30]

    von Keyserlingk C W, Sondhi S L 2016 Phys. Rev. B 93 245145Google Scholar

    [31]

    Tewari S, Stanescu T D 2020 Science 367 23Google Scholar

    [32]

    Claassen M, Kennes D M, Zingl M, Sentef M A, Rubio A 2019 Nat. Phys. 15 766Google Scholar

    [33]

    Jiang L, Kitagawa T, Alicea J, Akhmerov A R, Pekker D, Refael G, Cirac J I, Demler E, Lukin M D, Zoller P 2011 Phys. Rev. Lett. 106 220402Google Scholar

    [34]

    Thakurathi M, Loss D, Klinovaja J 2017 Phys. Rev. B 95 155407Google Scholar

    [35]

    Kundu A, Seradjeh B 2013 Phys. Rev. Lett. 111 136402Google Scholar

    [36]

    Peng Y 2020 Phys. Rev. Res. 2 013124Google Scholar

    [37]

    Cayssol J, Dóra B, Simon F, Moessner R 2013 Phys. Status Solidi RRL 7 101Google Scholar

    [38]

    Maczewsky L J, Zeuner J M, Nolte S, Szameit A 2017 Nat. Commun. 8 13756Google Scholar

    [39]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005Google Scholar

    [40]

    Shin D, Hübener H, De Giovannini U, Jin H, Rubio A, Park N 2018 Nat. Commun. 9 638Google Scholar

    [41]

    Kundu A, Fertig H A, Seradjeh B 2016 Phys. Rev. Lett. 116 016802Google Scholar

    [42]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 1Google Scholar

    [43]

    Sie E J, Lui C H, Lee Y H, Fu L, Kong J, Gedik N 2017 Science 355 1066Google Scholar

    [44]

    Collins J L, Tadich A, Wu W, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S, Mo S K, Adam S, Yang S A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar

    [45]

    Liu D E, Levchenko A, Baranger H U 2013 Phys. Rev. Lett. 111 047002Google Scholar

    [46]

    Fischer M C, Wilson J W, Robles F E, Warren W S 2016 Rev. Sci. Instrum. 87 031101Google Scholar

    [47]

    Först M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y, Merlin R, Cavalleri A 2011 Nat. Phys. 7 854Google Scholar

    [48]

    Hübener H, De Giovannini U, Rubio A 2018 Nano Lett. 18 1535Google Scholar

    [49]

    Lejman M, Vaudel G, Infante I C, Gemeiner P, Gusev V E, Dkhil B, Ruello P 2014 Nat. Commun. 5 4301Google Scholar

    [50]

    Fausti D, Tobey R I, Dean N, Kaiser S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A 2011 Science 331 189Google Scholar

    [51]

    Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Riccò M, Clark S R, Jaksch D, Cavalleri A 2016 Nature 530 461Google Scholar

    [52]

    Owerre S A 2018 Sci. Rep. 8 10098Google Scholar

    [53]

    Owerre S A 2019 Sci. Rep. 9 7197Google Scholar

    [54]

    Morimoto T, Po H C, Vishwanath A 2017 Phys. Rev. B 95 195155Google Scholar

    [55]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [56]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004Google Scholar

    [57]

    Wintersperger K, Braun C, Ünal F N, Eckardt A, Liberto M D, Goldman N, Bloch I, Aidelsburger M 2020 Nat. Phys. 16 1058Google Scholar

    [58]

    Potirniche I D, Potter A C, Schleier-Smith M, Vishwanath A, Yao N Y 2017 Phys. Rev. Lett. 119 123601Google Scholar

    [59]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [60]

    Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, Weitenberg C 2016 Science 352 1091Google Scholar

    [61]

    Fang K, Yu Z, Fan S 2012 Nat. Photonics 6 782Google Scholar

    [62]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [63]

    Cheng Q, Pan Y, Wang H, Zhang C, Yu D, Gover A, Zhang H, Li T, Zhou L, Zhu S 2019 Phys. Rev. Lett. 122 173901Google Scholar

    [64]

    Crowley P J D, Martin I, Chandran A 2019 Phys. Rev. B 99 064306Google Scholar

    [65]

    Nathan F, Rudner M S 2015 New J. Phys. 17 125014Google Scholar

    [66]

    Roy R, Harper F 2017 Phys. Rev. B 95 195128Google Scholar

    [67]

    Dutt A, Minkov M, Williamson I A D, Fan S 2020 Light Sci. Appl. 9 131Google Scholar

    [68]

    Liu H, Sun J T, Meng S 2019 Phys. Rev. B 99 075121Google Scholar

    [69]

    Liu H, Sun J T, Cheng C, Liu F, Meng S 2018 Phys. Rev. Lett. 120 237403Google Scholar

    [70]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [71]

    Oka T, Kitamura S 2019 Annu. Rev. Condens. Matter Phys. 10 387Google Scholar

    [72]

    Floquet G 1883 Ann. Sci. LÉcole Norm. Supér. 12 47Google Scholar

    [73]

    Shirley J H 1965 Phys. Rev. 138 B979Google Scholar

    [74]

    Xu S, Wu C 2018 Phys. Rev. Lett. 120 096401Google Scholar

    [75]

    Sambe H 1973 Phys. Rev. A 7 2203Google Scholar

    [76]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108Google Scholar

    [77]

    Milfeld K F, Wyatt R E 1983 Phys. Rev. A 27 72Google Scholar

    [78]

    Haga T 2019 Phys. Rev. E 100 062138Google Scholar

    [79]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151Google Scholar

    [80]

    Magnus W 1954 Commun. Pure Appl. Math. 7 649Google Scholar

    [81]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139Google Scholar

    [82]

    Eckardt A, Anisimovas E 2015 New J. Phys. 17 093039Google Scholar

    [83]

    Mikami T, Kitamura S, Yasuda K, Tsuji N, Oka T, Aoki H 2016 Phys. Rev. B 93 144307Google Scholar

    [84]

    Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A, Gedik N 2016 Nat. Phys. 12 306Google Scholar

    [85]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [86]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609Google Scholar

    [87]

    Perfetto E, Stefanucci G 2015 Phys. Rev. A 91 033416Google Scholar

    [88]

    Dehghani H, Mitra A 2015 Phys. Rev. B 92 165111Google Scholar

    [89]

    Morimoto T, Nagaosa N 2016 Sci. Adv. 2 e1501524Google Scholar

    [90]

    Faisal F H M, Kamiński J Z 1997 Phys. Rev. A 56 748Google Scholar

    [91]

    Ikeda T N, Chinzei K, Tsunetsugu H 2018 Phys. Rev. A 98 063426Google Scholar

    [92]

    Martin I, Refael G, Halperin B 2017 Phys. Rev. X 7 041008Google Scholar

    [93]

    Gu Z, Fertig H A, Arovas D P, Auerbach A 2011 Phys. Rev. Lett. 107 216601Google Scholar

    [94]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nat. Phys. 16 38Google Scholar

    [95]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [96]

    Inoue J, Tanaka A 2010 Phys. Rev. Lett. 105 017401Google Scholar

    [97]

    Hübener H, Sentef M A, De Giovannini U, Kemper A F, Rubio A 2017 Nat. Commun. 8 13940Google Scholar

    [98]

    Hermann W 1929 Z. Für Phys. 56 330Google Scholar

    [99]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [100]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S-M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [101]

    Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M 2015 Science 349 622Google Scholar

    [102]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [103]

    Yu Z M, Yao Y, Yang S A 2016 Phys. Rev. Lett. 117 077202Google Scholar

    [104]

    Zyuzin A A, Tiwari R P 2016 JETP Lett. 103 717Google Scholar

    [105]

    Cook A M, Fregoso B M, Juan F de, Coh S, Moore J E 2017 Nature Communications 8 1

    [106]

    Bucciantini L, Roy S, Kitamura S, Oka T 2017 Phys. Rev. B 96 041126Google Scholar

    [107]

    Sie E J, McIver J W, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [108]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [109]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [110]

    Drummond N D, Zólyomi V, Fal’ko V I 2012 Phys. Rev. B 85 075423Google Scholar

    [111]

    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113Google Scholar

    [112]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [113]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [114]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [115]

    Manzeli S, Dumcenco D, Migliato Marega G, Kis A 2019 Nat. Commun. 10 4831Google Scholar

    [116]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [117]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [118]

    Jiang C, Liu F, Cuadra J, Huang Z, Li K, Rasmita A, Srivastava A, Liu Z, Gao W-B 2017 Nat. Commun. 8 802Google Scholar

    [119]

    Unold T, Mueller K, Lienau C, Elsaesser T, Wieck A D 2004 Phys. Rev. Lett. 92 157401Google Scholar

    [120]

    Köster N S, Kolata K, Woscholski R, Lange C, Isella G, Chrastina D, von Känel H, Chatterjee S 2011 Appl. Phys. Lett. 98 161103Google Scholar

    [121]

    Mysyrowicz A, Hulin D, Antonetti A, Migus A, Masselink W T, Morkoç H 1986 Phys. Rev. Lett. 56 2748Google Scholar

    [122]

    Sie E J, McIver J W, Lee Y H, Fu L, Kong J, Gedik N 2016 SPIE Defense + Security, Ultrafast Bandgap Photonics, Baltimore, United States, May 13, 2016 p983518

    [123]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [124]

    Cunningham P D, Hanbicki A T, Reinecke T L, McCreary K M, Jonker B T 2019 Nat. Commun. 10 5539Google Scholar

    [125]

    Yan Z, Wang Z 2017 Phys. Rev. B 96 041206Google Scholar

    [126]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [127]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [128]

    Miao J, Zhang L, Wang C 2019 2D Mater. 6 032003Google Scholar

    [129]

    Kim J, Baik S S, Jung S W, Sohn Y, Ryu S H, Choi H J, Yang B J, Kim K S 2017 Phys. Rev. Lett. 119 226801Google Scholar

    [130]

    Zhao J, Yu R, Weng H, Fang Z 2016 Phys. Rev. B 94 195104Google Scholar

    [131]

    De Giovannini U, Hübener H, Rubio A 2016 Nano Lett. 16 7993Google Scholar

    [132]

    Huang H, Jin K H, Liu F 2018 Phys. Rev. B 98 121110Google Scholar

    [133]

    Ezawa M 2017 Phys. Rev. B 96 041205Google Scholar

    [134]

    Vaswani C, Wang L L, Mudiyanselage D H, Li Q, Lozano P M, Gu G D, Cheng D, Song B, Luo L, Kim R H J, Huang C, Liu Z, Mootz M, Perakis I E, Yao Y, Ho K M, Wang J 2020 Phys. Rev. X 10 021013Google Scholar

    [135]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002Google Scholar

    [136]

    Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C, Zhou X J 2017 Nat. Commun. 8 15512Google Scholar

    [137]

    Apffel B, Novkoski F, Eddi A, Fort E 2020 Nature 585 48Google Scholar

    [138]

    Kogar A, Zong A, Dolgirev P E, Shen X, Straquadine J, Bie Y Q, Wang X, Rohwer T, Tung I C, Yang Y, Li R, Yang J, Weathersby S, Park S, Kozina M E, Sie E J, Wen H, Jarillo-Herrero P, Fisher I R, Wang X, Gedik N 2019 Nat. Phys. 16 159Google Scholar

    [139]

    Nag T, Slager R J, Higuchi T, Oka T 2019 Phys. Rev. B 100 134301Google Scholar

  • 图 1  弗洛凯工程研究框架示意图. 深蓝区域代表被驱动体系, 如玻色子系统、费米子系统等; 红色区域代表狄拉克以及外尔半金属、马约拉纳费米子、拓扑界面态等非平衡拓扑物态; 绿色区域代表弗洛凯工程在超快自旋电子学、谷电子学、瞬态超导特性、斯格明子等方面存在潜在应用. 图片素材来自文献[31, 39, 62, 68, 70, 71]

    Fig. 1.  The schematic of the research framework of Floquet Engineering. The deep blue region denotes driven system including bosonic and fermionic system. The red region denotes the nonequilibrium states such as Dirac and Weyl semimetals, Majorana Fermions, topologically nontrivial interface states etc. And the green regions denotes the potential applications of Floquet engineering in ultrafast spintronics, valleytronics, transient superconductivity, Skyrmions etc. The pictures are adapted from Refs. [31, 39, 62, 68, 70, 71].

    图 2  (a) 在具有线性狄拉克锥的体系中施加圆偏光, 实现周期性外场驱动下的弗洛凯系统[71]. (b) 弗洛凯系统中的能带结构和边带[71]. (c) 弗洛凯系统能带结构起源示意图. 每一个方框分别代表静态系统哈密顿量子空间, 由于光场的引入, 使得相邻子空间的本征态之间通过吸收和发射虚光子过程发生耦合, 对应矩阵表达式中的非对角元项$ {H}_{\pm 1} $, 更高阶非对角元则对应多光子过程. (d) 利用Tr-ARPES技术在Bi2Se3表面观察到的弗洛凯-布洛赫能带结构[84]. 其中颜色深浅代表对应光电子信号强度, 图中红色箭头表示能隙所在位置

    Fig. 2.  (a) Floquet system driven by a periodic external field can be created by imposing circularly polarized laser on a linear Dirac cone[71]. (b) Energy band structure and energy band replica in Floquet systems[71]. (c) Schematic diagram of the origin of the energy side band of the Floquet system. Each framework represents one subspace from the Hamiltonian of the static system. The light field make the original eigenstates of different subspace coupled together through the process of absorbing and emitting virtual photons, corresponding to the off-diagonal element like $ {H}_{\pm n} $, n = 1. Other higher-order off-diagonal elements (n > 1) correspond to multiphoton processes. (d) Floquet-Bloch band structures of topologically nontrivial surface states on Bi2Se3 measured by Tr-ARPES[84]. The magnitude of color bar denotes the intensity of photoemission signals. The red arrows denote the gap-opening regions.

    图 3  (a) 蜂窝状晶格中的次近邻跃迁在施加圆偏光后对应虚光子的吸收和发射过程, 产生与Haldane模型类似的次近邻跃迁矩阵元[71]; (b) 施加圆偏光后石墨烯纳米带能带中的手性边缘态(红线)[93], 其在实空间对应两个边界上反向运动的手性边缘态(左下角插图); (c) 光子晶体中实现周期场驱动的弗洛凯系统[62]; (d) 利用泵浦-探测技术探测出现在石墨烯中的反常霍尔电导[94]; (e) 在不同光场强度下弗洛凯-布洛赫能带图及能隙内的手性边缘态电导平台[94]. 图中红色、蓝色、黑色能带分别对应光场强度逐渐加大, 弗洛凯能隙亦逐渐增大. 最后一张图对应光场大小为0.23 mJ/cm2时不同费米面位置对应接近量子化的电导平台, 反应了费米面附近的系统能隙为拓扑能隙

    Fig. 3.  (a) Laser irradiated honeycomb lattice have virtual photon absorption and emission processes. These effects lead to next-nearest-neighbor hoppings similar as that in Haldane model[71]. (b) Band structures of laser irradiated graphene nanoribbon[93]. The red lines in this panel denote the chiral edge states, which move along opposite directions of graphene nanoribbon edges (inset). (c) Photonic analog of laser irradiated honeycomb lattice[62]. (d) The anomalous Hall conductance in laser irradiated graphene measured by pump-probe method[94]. The sub-linear relationship between nearly quantized conductance and laser fluence has been observed. (e) Floquet band structure with different laser fluence[94]. If increasing the laser fluence, the anticrossing gap in Floquet system is also enlarged. The last panel shows the calculated conductance at different Fermi levels with laser fluence 0.23 mJ/cm2. These results indicate that the gap in Floquet system is topological nontrivial.

    图 4  光场驱动下三维狄拉克半金属Na3Bi的原子结构和电子结构 (a) Na3Bi原子结构示意图[13]; (b) 利用角分辨光电子能谱测量得到Na3Bi能带, 展现了其狄拉克点位置和线性能带色散关系[13]; (c) 沿着Na3Bi的x轴方向施加圆偏光, 三维狄拉克锥沿kx方向劈裂为两个手性相反的外尔锥[97]; (d) 沿着Na3Bi的x轴方向施加泵浦圆偏振光, 沿着y轴方向施加探测圆偏振光[97]; (e) TDDFT得到的弗洛凯-外尔点在倒空间中移动轨迹[97]

    Fig. 4.  Light field driven electronic phase transition of three-dimensional Dirac semimetal Na3Bi: (a) atomic structures of Na3Bi[13]; (b) band structures of Na3Bi near Dirac points measured by ARPES, The location of Dirac points and its linear dispersion are presented as well[13]. (c) when the circularly polarized light is applied along to the x axis of Na3Bi, the Dirac cone will inherently split into two Weyl cones with opposite chiralities along kx direction[97]; (d) schematics of the circularly polarized pump and probe laser irradiated along the x axis and y axis of Na3Bi[97]; (e) varying delay time during the laser pulses leads to dancing Floquet-Weyl points calculated by TDDFT[97].

    图 5  有质量二维体系的光场修饰态 (a)同时考虑电场和光场硅烯的有效哈密顿量对应的相图[29]. 横纵坐标分别对应电场强度$ {E}_{z} $${{\cal{A}}}^{2}/\varOmega ~({{\cal{A}}}^{2}$为光强, $ \varOmega $为光场频率). 拓扑荷由$ ({\cal{C}}, {{\cal{C}}}_{\mathrm{s}}) $描述, $ {\cal{C}} $为陈数, $ {{\cal{C}}}_{\mathrm{s}} $为自旋陈数. (b) 硅烯中的单自旋狄拉克锥能带示意图[29]. K' 能谷为能隙关闭的单自旋线性色散, K能谷则保持抛物线型能带色散. (c) WS2谷选择的光学斯塔克效应能级示意图[43]. (d) WS2谷选择的布洛赫-西格特位移能级示意图. (e), (f) 不同能谷的手性弗洛凯拓扑态[107]. 控制失谐量Δ诱导能级反转并改变导带与弗洛凯边带的杂化, 由于排斥作用K能谷的能带交叉被禁止而K' 能谷发生能带交叉, 形成手性边界态

    Fig. 5.  Photon dressed states in two-dimensional systems with massive Dirac fermions: (a) Phase diagram of silicene by using effective Hamiltonian considering both electrical field and light field[29]. (b) Sketch of silicene in the single Dirac cone state[29]. The K valley exhibits a parabolic dispersion while the K' valley remains the linear dispersion. (c) Schematics of the valley-selective OSE in WS2[43]. (d) Schematics of the Bloch-Siegert shift in WS2. (e), (f) Valley-specific Floquet topological phase in WS2[107]. The band inversion and hybridization of Floquet sidebands is tuned by Δ and the chiral edge state is formed due to OSE.

    图 6  压缩应变黑磷中的弗洛凯狄拉克费米子和拓扑相变 (a) 沿x方向压缩3.72%的黑磷原子结构. (b) 平衡态压缩黑磷的体相布里渊区以及(100)投影面[69]. 拓扑节点环出现在Γ-Z-W平面. (c) 光子能量0.5 eV下的黑磷的弗洛凯态的相图[69]. 变量为激光振幅$ {A}_{0} $y-z平面内的入射角$ \theta $, 如图(a)所示. (d)—(f) 光子能量0.5 eV下由激光驱动的弗洛凯狄拉克费米子发生拓扑相变[69] (d) ${A}_{0}=50~\mathrm{V}/c$; (e) ${A}_{0}=263~\mathrm{V}/c$; (f) ${A}_{0}=300~\mathrm{V}/c. \, c$为光速, 施加的圆偏光为$ {{A}}\left(t\right)={A}_{0}(\cos\left(\omega t\right), \sin\left(\omega t\right), 0) $. (g) 通过在节点环能带结构中施加激光照射, 可以实现高陈数外尔点[125]

    Fig. 6.  Floquet-Dirac fermions and topological phase transition in compressed black phosphorus. (a) Atomic structure with 3.72% compressive strain along x direction. (b) Bulk first Brillouin zone and projected (100) surface. Here, the topological nodal ring appears in the Γ-Z-W plane. (c) Topological phase transition driven by laser with varying laser amplitude and incident angle of y-z plane $ \theta $ under a fixed photon energy 0.5 eV[69]. (d)–(f) Floquet-Dirac band structure under different laser parameter[69]: (d) ${A}_{0}=50~\mathrm{V}/c$; (e) ${A}_{0}=263~\mathrm{V}/c$; (f) ${A}_{0}=300~\mathrm{V}/c.\, c$ is the speed of light. (g) Construction of high Chern number Weyl points in nodal ring under incident light[125].

    图 7  光场驱动下相干声子驱动的弗洛凯态 (a) 由石墨烯E2g振动模中简并的横向和纵向声子模(相位差$ \mathrm{\pi }/2 $)产生的手性圆偏声子[48]; (b) 手性相干声子驱动下计算得到的石墨烯Tr-ARPES以及TDDFT结果与弗洛凯能带相符合[48]; (c) ZrTe5的原子结构和层间振动模式A1g示意图[134]; (d) 平衡态下单层MoS2的能带结构, 蓝框标注的是K能谷附近的导带底[40]; (e) MoS2自旋倾向角与上下自旋能隙$ \Delta \varepsilon $关于沿声子振动模E'' 方向位移Δds的关系图, 插图为E'' 的振动模式[40]; (f) MoS2KK' 能谷由右旋声子定义的两个自旋-弗洛凯本征态[40]

    Fig. 7.  Floquet states induced by coherent phonons driven by periodic light field: (a) Circularly chiral phonons generated from the degenerate LO and TO phonons (with phase difference π/2) of E2g vibration mode of graphene[48]; (b) calculated Tr-ARPES of phonon-driven graphene fits well with TDDFT simulations[48]; (c) atomic structures and interlayer vibration mode A1g of ZrTe5[134]; (d) band structure of monolayer MoS2 under equilibrium[40], the blue box marks the lowest conduction band near K valley; (e) relationship between the spin inclination angle and the up/down spin splitting Δε with respect to the displacement Δds along the phonon mode E'', the inset shows the E'' vibrational mode[40]; (f) spin-Floquet eigenstates of MoS2 at K and K' valleys induced by the right circularly polarized phonon[40].

  • [1]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [2]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [3]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [4]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [5]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [6]

    Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H, Fang C 2019 Nature 566 475Google Scholar

    [7]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [8]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [9]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [10]

    Möller M M, Sawatzky G A, Franz M, Berciu M 2017 Nat. Commun. 8 1Google Scholar

    [11]

    Bi R, Yan Z, Lu L, Wang Z 2017 Phys. Rev. B 96 201305Google Scholar

    [12]

    Fang C, Weng H, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [13]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [14]

    Ali M N, Gibson Q, Jeon S, Zhou B B, Yazdani A, Cava R J 2014 Inorg. Chem. 53 4062Google Scholar

    [15]

    Chew A, Mross D F, Alicea J 2020 Phys. Rev. Lett. 124 096802Google Scholar

    [16]

    Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361Google Scholar

    [17]

    Frolov S M, Manfra M J, Sau J D 2020 Nat. Phys. 16 718Google Scholar

    [18]

    Senthil T 2015 Annu. Rev. Condens. Matter Phys. 6 299Google Scholar

    [19]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012Google Scholar

    [20]

    Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Yu, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A, Neupert T 2018 Nat. Phys. 14 918Google Scholar

    [21]

    Xue H, Yang Y, Gao F, Chong Y, Zhang B 2019 Nat. Mater. 18 108Google Scholar

    [22]

    Huang B, Wu Y H, Liu W V 2018 Phys. Rev. Lett. 120 110603Google Scholar

    [23]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402Google Scholar

    [24]

    Else D V, Nayak C 2016 Phys. Rev. B 93 201103Google Scholar

    [25]

    Roy R, Harper F 2017 Phys. Rev. B 96 155118Google Scholar

    [26]

    Leykam D, Rechtsman M C, Chong Y D 2016 Phys. Rev. Lett. 117 013902Google Scholar

    [27]

    Oka T, Aoki H 2009 Phys. Rev. B 79 081406Google Scholar

    [28]

    Gröning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar

    [29]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [30]

    von Keyserlingk C W, Sondhi S L 2016 Phys. Rev. B 93 245145Google Scholar

    [31]

    Tewari S, Stanescu T D 2020 Science 367 23Google Scholar

    [32]

    Claassen M, Kennes D M, Zingl M, Sentef M A, Rubio A 2019 Nat. Phys. 15 766Google Scholar

    [33]

    Jiang L, Kitagawa T, Alicea J, Akhmerov A R, Pekker D, Refael G, Cirac J I, Demler E, Lukin M D, Zoller P 2011 Phys. Rev. Lett. 106 220402Google Scholar

    [34]

    Thakurathi M, Loss D, Klinovaja J 2017 Phys. Rev. B 95 155407Google Scholar

    [35]

    Kundu A, Seradjeh B 2013 Phys. Rev. Lett. 111 136402Google Scholar

    [36]

    Peng Y 2020 Phys. Rev. Res. 2 013124Google Scholar

    [37]

    Cayssol J, Dóra B, Simon F, Moessner R 2013 Phys. Status Solidi RRL 7 101Google Scholar

    [38]

    Maczewsky L J, Zeuner J M, Nolte S, Szameit A 2017 Nat. Commun. 8 13756Google Scholar

    [39]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005Google Scholar

    [40]

    Shin D, Hübener H, De Giovannini U, Jin H, Rubio A, Park N 2018 Nat. Commun. 9 638Google Scholar

    [41]

    Kundu A, Fertig H A, Seradjeh B 2016 Phys. Rev. Lett. 116 016802Google Scholar

    [42]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 1Google Scholar

    [43]

    Sie E J, Lui C H, Lee Y H, Fu L, Kong J, Gedik N 2017 Science 355 1066Google Scholar

    [44]

    Collins J L, Tadich A, Wu W, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S, Mo S K, Adam S, Yang S A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar

    [45]

    Liu D E, Levchenko A, Baranger H U 2013 Phys. Rev. Lett. 111 047002Google Scholar

    [46]

    Fischer M C, Wilson J W, Robles F E, Warren W S 2016 Rev. Sci. Instrum. 87 031101Google Scholar

    [47]

    Först M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y, Merlin R, Cavalleri A 2011 Nat. Phys. 7 854Google Scholar

    [48]

    Hübener H, De Giovannini U, Rubio A 2018 Nano Lett. 18 1535Google Scholar

    [49]

    Lejman M, Vaudel G, Infante I C, Gemeiner P, Gusev V E, Dkhil B, Ruello P 2014 Nat. Commun. 5 4301Google Scholar

    [50]

    Fausti D, Tobey R I, Dean N, Kaiser S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A 2011 Science 331 189Google Scholar

    [51]

    Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Riccò M, Clark S R, Jaksch D, Cavalleri A 2016 Nature 530 461Google Scholar

    [52]

    Owerre S A 2018 Sci. Rep. 8 10098Google Scholar

    [53]

    Owerre S A 2019 Sci. Rep. 9 7197Google Scholar

    [54]

    Morimoto T, Po H C, Vishwanath A 2017 Phys. Rev. B 95 195155Google Scholar

    [55]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [56]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004Google Scholar

    [57]

    Wintersperger K, Braun C, Ünal F N, Eckardt A, Liberto M D, Goldman N, Bloch I, Aidelsburger M 2020 Nat. Phys. 16 1058Google Scholar

    [58]

    Potirniche I D, Potter A C, Schleier-Smith M, Vishwanath A, Yao N Y 2017 Phys. Rev. Lett. 119 123601Google Scholar

    [59]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [60]

    Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, Weitenberg C 2016 Science 352 1091Google Scholar

    [61]

    Fang K, Yu Z, Fan S 2012 Nat. Photonics 6 782Google Scholar

    [62]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [63]

    Cheng Q, Pan Y, Wang H, Zhang C, Yu D, Gover A, Zhang H, Li T, Zhou L, Zhu S 2019 Phys. Rev. Lett. 122 173901Google Scholar

    [64]

    Crowley P J D, Martin I, Chandran A 2019 Phys. Rev. B 99 064306Google Scholar

    [65]

    Nathan F, Rudner M S 2015 New J. Phys. 17 125014Google Scholar

    [66]

    Roy R, Harper F 2017 Phys. Rev. B 95 195128Google Scholar

    [67]

    Dutt A, Minkov M, Williamson I A D, Fan S 2020 Light Sci. Appl. 9 131Google Scholar

    [68]

    Liu H, Sun J T, Meng S 2019 Phys. Rev. B 99 075121Google Scholar

    [69]

    Liu H, Sun J T, Cheng C, Liu F, Meng S 2018 Phys. Rev. Lett. 120 237403Google Scholar

    [70]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [71]

    Oka T, Kitamura S 2019 Annu. Rev. Condens. Matter Phys. 10 387Google Scholar

    [72]

    Floquet G 1883 Ann. Sci. LÉcole Norm. Supér. 12 47Google Scholar

    [73]

    Shirley J H 1965 Phys. Rev. 138 B979Google Scholar

    [74]

    Xu S, Wu C 2018 Phys. Rev. Lett. 120 096401Google Scholar

    [75]

    Sambe H 1973 Phys. Rev. A 7 2203Google Scholar

    [76]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108Google Scholar

    [77]

    Milfeld K F, Wyatt R E 1983 Phys. Rev. A 27 72Google Scholar

    [78]

    Haga T 2019 Phys. Rev. E 100 062138Google Scholar

    [79]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151Google Scholar

    [80]

    Magnus W 1954 Commun. Pure Appl. Math. 7 649Google Scholar

    [81]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139Google Scholar

    [82]

    Eckardt A, Anisimovas E 2015 New J. Phys. 17 093039Google Scholar

    [83]

    Mikami T, Kitamura S, Yasuda K, Tsuji N, Oka T, Aoki H 2016 Phys. Rev. B 93 144307Google Scholar

    [84]

    Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A, Gedik N 2016 Nat. Phys. 12 306Google Scholar

    [85]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [86]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609Google Scholar

    [87]

    Perfetto E, Stefanucci G 2015 Phys. Rev. A 91 033416Google Scholar

    [88]

    Dehghani H, Mitra A 2015 Phys. Rev. B 92 165111Google Scholar

    [89]

    Morimoto T, Nagaosa N 2016 Sci. Adv. 2 e1501524Google Scholar

    [90]

    Faisal F H M, Kamiński J Z 1997 Phys. Rev. A 56 748Google Scholar

    [91]

    Ikeda T N, Chinzei K, Tsunetsugu H 2018 Phys. Rev. A 98 063426Google Scholar

    [92]

    Martin I, Refael G, Halperin B 2017 Phys. Rev. X 7 041008Google Scholar

    [93]

    Gu Z, Fertig H A, Arovas D P, Auerbach A 2011 Phys. Rev. Lett. 107 216601Google Scholar

    [94]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nat. Phys. 16 38Google Scholar

    [95]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [96]

    Inoue J, Tanaka A 2010 Phys. Rev. Lett. 105 017401Google Scholar

    [97]

    Hübener H, Sentef M A, De Giovannini U, Kemper A F, Rubio A 2017 Nat. Commun. 8 13940Google Scholar

    [98]

    Hermann W 1929 Z. Für Phys. 56 330Google Scholar

    [99]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [100]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S-M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [101]

    Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M 2015 Science 349 622Google Scholar

    [102]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [103]

    Yu Z M, Yao Y, Yang S A 2016 Phys. Rev. Lett. 117 077202Google Scholar

    [104]

    Zyuzin A A, Tiwari R P 2016 JETP Lett. 103 717Google Scholar

    [105]

    Cook A M, Fregoso B M, Juan F de, Coh S, Moore J E 2017 Nature Communications 8 1

    [106]

    Bucciantini L, Roy S, Kitamura S, Oka T 2017 Phys. Rev. B 96 041126Google Scholar

    [107]

    Sie E J, McIver J W, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [108]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [109]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [110]

    Drummond N D, Zólyomi V, Fal’ko V I 2012 Phys. Rev. B 85 075423Google Scholar

    [111]

    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113Google Scholar

    [112]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [113]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [114]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [115]

    Manzeli S, Dumcenco D, Migliato Marega G, Kis A 2019 Nat. Commun. 10 4831Google Scholar

    [116]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [117]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [118]

    Jiang C, Liu F, Cuadra J, Huang Z, Li K, Rasmita A, Srivastava A, Liu Z, Gao W-B 2017 Nat. Commun. 8 802Google Scholar

    [119]

    Unold T, Mueller K, Lienau C, Elsaesser T, Wieck A D 2004 Phys. Rev. Lett. 92 157401Google Scholar

    [120]

    Köster N S, Kolata K, Woscholski R, Lange C, Isella G, Chrastina D, von Känel H, Chatterjee S 2011 Appl. Phys. Lett. 98 161103Google Scholar

    [121]

    Mysyrowicz A, Hulin D, Antonetti A, Migus A, Masselink W T, Morkoç H 1986 Phys. Rev. Lett. 56 2748Google Scholar

    [122]

    Sie E J, McIver J W, Lee Y H, Fu L, Kong J, Gedik N 2016 SPIE Defense + Security, Ultrafast Bandgap Photonics, Baltimore, United States, May 13, 2016 p983518

    [123]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [124]

    Cunningham P D, Hanbicki A T, Reinecke T L, McCreary K M, Jonker B T 2019 Nat. Commun. 10 5539Google Scholar

    [125]

    Yan Z, Wang Z 2017 Phys. Rev. B 96 041206Google Scholar

    [126]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [127]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [128]

    Miao J, Zhang L, Wang C 2019 2D Mater. 6 032003Google Scholar

    [129]

    Kim J, Baik S S, Jung S W, Sohn Y, Ryu S H, Choi H J, Yang B J, Kim K S 2017 Phys. Rev. Lett. 119 226801Google Scholar

    [130]

    Zhao J, Yu R, Weng H, Fang Z 2016 Phys. Rev. B 94 195104Google Scholar

    [131]

    De Giovannini U, Hübener H, Rubio A 2016 Nano Lett. 16 7993Google Scholar

    [132]

    Huang H, Jin K H, Liu F 2018 Phys. Rev. B 98 121110Google Scholar

    [133]

    Ezawa M 2017 Phys. Rev. B 96 041205Google Scholar

    [134]

    Vaswani C, Wang L L, Mudiyanselage D H, Li Q, Lozano P M, Gu G D, Cheng D, Song B, Luo L, Kim R H J, Huang C, Liu Z, Mootz M, Perakis I E, Yao Y, Ho K M, Wang J 2020 Phys. Rev. X 10 021013Google Scholar

    [135]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002Google Scholar

    [136]

    Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C, Zhou X J 2017 Nat. Commun. 8 15512Google Scholar

    [137]

    Apffel B, Novkoski F, Eddi A, Fort E 2020 Nature 585 48Google Scholar

    [138]

    Kogar A, Zong A, Dolgirev P E, Shen X, Straquadine J, Bie Y Q, Wang X, Rohwer T, Tung I C, Yang Y, Li R, Yang J, Weathersby S, Park S, Kozina M E, Sie E J, Wen H, Jarillo-Herrero P, Fisher I R, Wang X, Gedik N 2019 Nat. Phys. 16 159Google Scholar

    [139]

    Nag T, Slager R J, Higuchi T, Oka T 2019 Phys. Rev. B 100 134301Google Scholar

  • [1] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符. 物理学报, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [5] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [6] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [7] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算. 物理学报, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [10] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [11] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [12] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [13] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [14] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [15] 袁振坤, 许鹏, 陈时友. 多元半导体光伏材料中晶格缺陷的计算预测. 物理学报, 2015, 64(18): 186102. doi: 10.7498/aps.64.186102
    [16] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [17] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [18] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分. 物理学报, 2006, 55(12): 6589-6594. doi: 10.7498/aps.55.6589
计量
  • 文章访问数:  9430
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-03-20
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-05

/

返回文章
返回