-
利用自行研制的强磁场螺旋波等离子体化学气相沉积装置(HWP-CVD), 通过改变等离子放电参数, 实现多种碳基薄膜制备. 利用朗缪尔探针、发射光谱以及质谱对Ar/CH4等离子体放电进行原位诊断; 用扫描电子显微镜和拉曼光谱对碳基薄膜进行表征. 结果表明: 在给定参数下, 等离子体放电模式均为螺旋波放电模式; 在给定CH4流量下, 等离子体中电子能量分布均足以使甲烷分子离解, 并形成含碳活性自由基. 通过CH4流量调整, 实现了不同碳基薄膜的制备. 研究表明: 当等离子体中富含CH和H自由基时, 适合类金刚石薄膜生长; 当等离子体中富含C2自由基和少H时, 适合垂直石墨烯纳米片生长. 根据等离子体诊断和薄膜表征结果, 提出了Ar螺旋波等离子体作用下甲烷分子的裂解机理, 建立了碳基薄膜的生长模型; 验证了Ar/CH4–HWP在碳基纳米薄膜制备中的可行性, 为HWP-CVD技术制备碳基纳米薄膜提供借鉴.A variety of carbon-based thin films are prepared by self-developed helicon wave plasma chemical vapor deposition (HMHX, HWP-CVD) through changing the parameters of plasma discharge. The Ar/CH4 plasma discharge is diagnosed in situ by Langmuir probe, emission spectroscopy and mass spectrometry. The carbon thin films are characterized by scanning electron microscopy (SEM) and Raman spectroscopy (Raman). The results show that under the given parameters, the plasma discharge modes are all helicon wave discharge modes. Under a given CH4 flow rate, the energy distribution in the plasma is enough to dissociate the methane molecules and form carbon free radicals. The preparation of different carbon-based films is realized by adjusting the CH4 fluence. The research result shows that when the plasma is rich in CH and H radicals, it is suitable for growing diamond-like carbon films. When the plasma is rich in C2 radicals and less H, it is favorable for growing vertical graphene nanosheets. According to the results of plasma diagnosis and material characterization, the decomposition mechanism of methane molecules under the action of Ar helicon wave plasma (HWP) is proposed, and the growth model of carbon-based materials is established, the feasibility of Ar/CH4-HWP in the preparation of carbon-based nanomaterials is verified, which provides a reference for preparing the carbon-based materials by HWP-CVD technology.
-
Keywords:
- optical emission spectroscope /
- mass spectroscopy /
- carbon nanomaterials /
- helicon wave plasma
[1] Dennison J R, Mark H, Greg S 1996 Spectroscopy 11 38
[2] Roger N 2019 Encyclopedia of Biomedical Engineering (1st Ed.) (Amsterdam: Elsevier) p52
[3] Robertson J 2002 Mater. Sci. Eng., R 37 129Google Scholar
[4] Cheng C Y, Teii K 2012 IEEE Trans. Plasma Sci. 40 1783Google Scholar
[5] Aisenberg S, Chabot R 1971 J. Appl. Phys. 42 2953Google Scholar
[6] Savvides N, Window 1985 J. Vac. Sci. Technol., A 3 2386Google Scholar
[7] Bleu Y, Bourquard F, Tite T, et al. 2018 Frontiers in Chemistry 6 572Google Scholar
[8] Entesar A G, Al-Jabarti G A, Reem M A 2020 Mater. Res. Express 7 015002Google Scholar
[9] Woehrl N, Ochedowski O, Gottlieb S, et al. 2014 AIP Adv. 4 047128Google Scholar
[10] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001Google Scholar
[11] Yu W, Wang B Z, Sun Y T, et al. 2003 J. Synth. Cryst. 323 272
[12] Ji P Y, Chen J L, Huang T Y, et al. 2020 Appl. Phys. A 126 247Google Scholar
[13] Chen J L, Ji P Y, Jin C G, et al. 2019 Plasma Sci. Technol. 21 025502Google Scholar
[14] Ji P Y, Yu J, Huang T Y, et al. 2018 Plasma Sci. Technol. 20 025505Google Scholar
[15] Ji P Y, Chen J L, Huang T Y, et al. 2020 Diamond Relat. Mater. 108 107958Google Scholar
[16] Huang T Y, Ji P Y, Huang J J, et al. 2016 Sci. China, Ser. G 59 645201Google Scholar
[17] Saikat C T, McCarren D, Lee T, et al. 2015 IEEE Trans. Plasma Sci. 43 2754Google Scholar
[18] Zhou H, Watanabe J, Miyake M, et al. 2007 Diamond Relat. Mater. 16 675Google Scholar
[19] Ostrikov K K, Xu S 2007 Plasma-Aided Nanofabrication: from Plasma Sources to Nanoassembly (1st Ed.) (Berlin: Wiley-VCH) p182
[20] Majumdar A, Behnke J F, Hippler R, et al. 2005 J. Phys. Chem. A 109 9371Google Scholar
[21] Elvis O L, Borges F B, Rossi A M, et al. 2017 Vacuum 146 233Google Scholar
[22] Zhou J, Martin I T, Ayers R, et al. 2006 Plasma Sources Sci. Technol. 154 714Google Scholar
[23] Shui X Z, Ru G C 1989 J. Non-Cryst. Solids 112 161Google Scholar
[24] Riccardi C, Barni R, Fontanesi M, et al. 2000 Czech. J. Phys. 50 389Google Scholar
[25] Chen F F 1991 Plasma Phys. Controlled Fusion 334 339
[26] Liu D P, Xu Y, Yang X F, Yu S J, Sun Q, Zhu A M, Ma T C 2002 Diamond Relat. Mater. 11 1491Google Scholar
[27] Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. London, Ser. A 362 2477Google Scholar
[28] Castiglioni C, Tommasini M 2007 Opt. Pura Apl. 40 169
[29] Wu Y H, Qiao P W, Chong T, et al. 2010 Adv. Mater. 14 64
[30] Goyette A N, Matsuda Y, Anderson L W, et al. 1998 J. Vac. Sci. Technol. A 16 337Google Scholar
[31] Shiomi T, Nagai H, Kato K, et al. 2001 Diamond Relat. Mater. 10 388Google Scholar
-
图 6 (a) +Ion谱图(CH4 85 sccm); (b)不同CH4流量下等离子体中+Ion含量变化; (c)中性粒子谱图(CH4 85 sccm); (d)不同CH4流量下等离子体中中性粒子含量变化. SEM, 二次电子倍增
Fig. 6. (a) +Ion mass spectrometry (CH4 85 sccm); (b) +Ion content in plasma under different methane flow; (c) RGA mass spectrometry (CH4 85 sccm); (d) RGA content in plasma under different methane flow. SEM, secondary electron multiplier.
表 1 Ar/CH4螺旋波等离子体中物质反应过程
Table 1. Species reaction process in Ar/CH4 HWP-CVD.
等离子体中
主要物质产生过程 参考文献 Ar+/* ${\rm{A} }{\rm{r} }\stackrel{ {{E} }\;{\rm{a} }{\rm{n} }{\rm{d} }\;{{H} } }{\longrightarrow }{\rm{Ar} }^{*}+{\rm{e} }^{-}$ [22, 24] $ {\rm{Ar}}^{*}+{\rm{e}}^{-}\Rightarrow {\rm{Ar}}^{+}+{2{\rm{e}}}^{-} $ $ {\rm{A}}{\rm{r}}+{\rm{e}}^{-}\Rightarrow {\rm{Ar}}^{*}+{\rm{e}}^{-} $ H $ {\rm{Ar}}^{*}+{{\rm{H}}}_{2}\Rightarrow {{\rm{A}}{\rm{r}}{\rm{H}}}^{*}+{\rm{H}} $ [20, 22, 24] $ {\rm{CH}}_{4}+{\rm{e}}\Rightarrow {{\rm{CH}}_{3}}^{+}+{\rm{H}}+2{\rm{e}} $ $ \Rightarrow {{\rm{CH}}_{2}}^{+}+{{\rm{H}}}_{2} $ $ \Rightarrow {\rm{C}}{\rm{H}}+{\rm{H}}+{{\rm{H}}}_{2} $ $ \Rightarrow {\rm{C}}+{2{\rm{H}}}_{2} $ CH $ {\rm{C}}+{\rm{CH}}_{4}\rightleftharpoons {\rm{C}}{\rm{H}}+{\rm{CH}}_{3} $ [26] $ {\rm{CH}}_{2}^{*}+{\rm{H}}\leftrightarrows {\rm{C}}{\rm{H}}+{{\rm{H}}}_{2} $ C2 $ {\rm{A}}{\rm{r}}+{{\rm{C}}}_{2}{{\rm{H}}}_{2}\Rightarrow {{\rm{C}}}_{2}+{{\rm{H}}}_{2}+{\rm{A}}{\rm{r}} $ [24] $ {\rm{C}}+{\rm{C}}{\rm{H}}\rightleftharpoons {{\rm{C}}}_{2}+{\rm{H}} $ $ {{\rm{C}}}_{2}{\rm{H}}+{\rm{H}}\rightleftharpoons {{\rm{C}}}_{2}+{{\rm{H}}}_{2} $ $ {{\rm{C}}}_{2}{\rm{H}}+{\rm{M}}\rightleftharpoons {{\rm{C}}}_{2}+{\rm{H}}+{\rm{M}} $ C2H2 $ {\rm{C}}{\rm{H}}+{\rm{CH}}_{2}\rightleftharpoons {{\rm{C}}}_{2}{{\rm{H}}}_{2}+{\rm{H}} $ [24, 26] $ {\rm{CH}}_{2}+{\rm{CH}}_{2}\rightleftharpoons {{\rm{C}}}_{2}{{\rm{H}}}_{2}+{{\rm{H}}}_{2} $ $ {\rm{CH}}_{2}+{\rm{CH}}_{2}\rightleftharpoons {{\rm{C}}}_{2}{{\rm{H}}}_{2}+2{\rm{H}} $ CHn $ {\rm{Ar}}^{+}+{\rm{CH}}_{4}\rightleftharpoons {\rm{CH}}_{n}+\left(4-n\right){\rm{H}}+{\rm{A}}{\rm{r}} $ [24] $ {\rm{e}}+{\rm{CH}}_{4}\rightleftharpoons {\rm{CH}}_{n}+\left(4-n\right){\rm{H}}+{\rm{e}} $ -
[1] Dennison J R, Mark H, Greg S 1996 Spectroscopy 11 38
[2] Roger N 2019 Encyclopedia of Biomedical Engineering (1st Ed.) (Amsterdam: Elsevier) p52
[3] Robertson J 2002 Mater. Sci. Eng., R 37 129Google Scholar
[4] Cheng C Y, Teii K 2012 IEEE Trans. Plasma Sci. 40 1783Google Scholar
[5] Aisenberg S, Chabot R 1971 J. Appl. Phys. 42 2953Google Scholar
[6] Savvides N, Window 1985 J. Vac. Sci. Technol., A 3 2386Google Scholar
[7] Bleu Y, Bourquard F, Tite T, et al. 2018 Frontiers in Chemistry 6 572Google Scholar
[8] Entesar A G, Al-Jabarti G A, Reem M A 2020 Mater. Res. Express 7 015002Google Scholar
[9] Woehrl N, Ochedowski O, Gottlieb S, et al. 2014 AIP Adv. 4 047128Google Scholar
[10] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001Google Scholar
[11] Yu W, Wang B Z, Sun Y T, et al. 2003 J. Synth. Cryst. 323 272
[12] Ji P Y, Chen J L, Huang T Y, et al. 2020 Appl. Phys. A 126 247Google Scholar
[13] Chen J L, Ji P Y, Jin C G, et al. 2019 Plasma Sci. Technol. 21 025502Google Scholar
[14] Ji P Y, Yu J, Huang T Y, et al. 2018 Plasma Sci. Technol. 20 025505Google Scholar
[15] Ji P Y, Chen J L, Huang T Y, et al. 2020 Diamond Relat. Mater. 108 107958Google Scholar
[16] Huang T Y, Ji P Y, Huang J J, et al. 2016 Sci. China, Ser. G 59 645201Google Scholar
[17] Saikat C T, McCarren D, Lee T, et al. 2015 IEEE Trans. Plasma Sci. 43 2754Google Scholar
[18] Zhou H, Watanabe J, Miyake M, et al. 2007 Diamond Relat. Mater. 16 675Google Scholar
[19] Ostrikov K K, Xu S 2007 Plasma-Aided Nanofabrication: from Plasma Sources to Nanoassembly (1st Ed.) (Berlin: Wiley-VCH) p182
[20] Majumdar A, Behnke J F, Hippler R, et al. 2005 J. Phys. Chem. A 109 9371Google Scholar
[21] Elvis O L, Borges F B, Rossi A M, et al. 2017 Vacuum 146 233Google Scholar
[22] Zhou J, Martin I T, Ayers R, et al. 2006 Plasma Sources Sci. Technol. 154 714Google Scholar
[23] Shui X Z, Ru G C 1989 J. Non-Cryst. Solids 112 161Google Scholar
[24] Riccardi C, Barni R, Fontanesi M, et al. 2000 Czech. J. Phys. 50 389Google Scholar
[25] Chen F F 1991 Plasma Phys. Controlled Fusion 334 339
[26] Liu D P, Xu Y, Yang X F, Yu S J, Sun Q, Zhu A M, Ma T C 2002 Diamond Relat. Mater. 11 1491Google Scholar
[27] Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. London, Ser. A 362 2477Google Scholar
[28] Castiglioni C, Tommasini M 2007 Opt. Pura Apl. 40 169
[29] Wu Y H, Qiao P W, Chong T, et al. 2010 Adv. Mater. 14 64
[30] Goyette A N, Matsuda Y, Anderson L W, et al. 1998 J. Vac. Sci. Technol. A 16 337Google Scholar
[31] Shiomi T, Nagai H, Kato K, et al. 2001 Diamond Relat. Mater. 10 388Google Scholar
计量
- 文章访问数: 6054
- PDF下载量: 114
- 被引次数: 0