搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋波等离子体制备多种碳基薄膜原位诊断研究

季佩宇 黄天源 陈佳丽 诸葛兰剑 吴雪梅

引用本文:
Citation:

螺旋波等离子体制备多种碳基薄膜原位诊断研究

季佩宇, 黄天源, 陈佳丽, 诸葛兰剑, 吴雪梅

In-situ diagnosis of Ar/CH4 helicon wave plasma for synthesis of carbon nanomaterials

Ji Pei-Yu, Huang Tian-Yuan, Chen Jia-Li, Zhuge Lan-Jian, Wu Xue-Mei
PDF
HTML
导出引用
  • 利用自行研制的强磁场螺旋波等离子体化学气相沉积装置(HWP-CVD), 通过改变等离子放电参数, 实现多种碳基薄膜制备. 利用朗缪尔探针、发射光谱以及质谱对Ar/CH4等离子体放电进行原位诊断; 用扫描电子显微镜和拉曼光谱对碳基薄膜进行表征. 结果表明: 在给定参数下, 等离子体放电模式均为螺旋波放电模式; 在给定CH4流量下, 等离子体中电子能量分布均足以使甲烷分子离解, 并形成含碳活性自由基. 通过CH4流量调整, 实现了不同碳基薄膜的制备. 研究表明: 当等离子体中富含CH和H自由基时, 适合类金刚石薄膜生长; 当等离子体中富含C2自由基和少H时, 适合垂直石墨烯纳米片生长. 根据等离子体诊断和薄膜表征结果, 提出了Ar螺旋波等离子体作用下甲烷分子的裂解机理, 建立了碳基薄膜的生长模型; 验证了Ar/CH4–HWP在碳基纳米薄膜制备中的可行性, 为HWP-CVD技术制备碳基纳米薄膜提供借鉴.
    A variety of carbon-based thin films are prepared by self-developed helicon wave plasma chemical vapor deposition (HMHX, HWP-CVD) through changing the parameters of plasma discharge. The Ar/CH4 plasma discharge is diagnosed in situ by Langmuir probe, emission spectroscopy and mass spectrometry. The carbon thin films are characterized by scanning electron microscopy (SEM) and Raman spectroscopy (Raman). The results show that under the given parameters, the plasma discharge modes are all helicon wave discharge modes. Under a given CH4 flow rate, the energy distribution in the plasma is enough to dissociate the methane molecules and form carbon free radicals. The preparation of different carbon-based films is realized by adjusting the CH4 fluence. The research result shows that when the plasma is rich in CH and H radicals, it is suitable for growing diamond-like carbon films. When the plasma is rich in C2 radicals and less H, it is favorable for growing vertical graphene nanosheets. According to the results of plasma diagnosis and material characterization, the decomposition mechanism of methane molecules under the action of Ar helicon wave plasma (HWP) is proposed, and the growth model of carbon-based materials is established, the feasibility of Ar/CH4-HWP in the preparation of carbon-based nanomaterials is verified, which provides a reference for preparing the carbon-based materials by HWP-CVD technology.
      通信作者: 诸葛兰剑, ljzhuge@suda.edu.cn ; 吴雪梅, xmwu@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975163)、江苏省高等教育优势学科建设(PAPD)和江苏省研究生培养创新工程(批准号: KYCX20_2649)资助的课题
      Corresponding author: Zhuge Lan-Jian, ljzhuge@suda.edu.cn ; Wu Xue-Mei, xmwu@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975163), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX20_2649)
    [1]

    Dennison J R, Mark H, Greg S 1996 Spectroscopy 11 38

    [2]

    Roger N 2019 Encyclopedia of Biomedical Engineering (1st Ed.) (Amsterdam: Elsevier) p52

    [3]

    Robertson J 2002 Mater. Sci. Eng., R 37 129Google Scholar

    [4]

    Cheng C Y, Teii K 2012 IEEE Trans. Plasma Sci. 40 1783Google Scholar

    [5]

    Aisenberg S, Chabot R 1971 J. Appl. Phys. 42 2953Google Scholar

    [6]

    Savvides N, Window 1985 J. Vac. Sci. Technol., A 3 2386Google Scholar

    [7]

    Bleu Y, Bourquard F, Tite T, et al. 2018 Frontiers in Chemistry 6 572Google Scholar

    [8]

    Entesar A G, Al-Jabarti G A, Reem M A 2020 Mater. Res. Express 7 015002Google Scholar

    [9]

    Woehrl N, Ochedowski O, Gottlieb S, et al. 2014 AIP Adv. 4 047128Google Scholar

    [10]

    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001Google Scholar

    [11]

    Yu W, Wang B Z, Sun Y T, et al. 2003 J. Synth. Cryst. 323 272

    [12]

    Ji P Y, Chen J L, Huang T Y, et al. 2020 Appl. Phys. A 126 247Google Scholar

    [13]

    Chen J L, Ji P Y, Jin C G, et al. 2019 Plasma Sci. Technol. 21 025502Google Scholar

    [14]

    Ji P Y, Yu J, Huang T Y, et al. 2018 Plasma Sci. Technol. 20 025505Google Scholar

    [15]

    Ji P Y, Chen J L, Huang T Y, et al. 2020 Diamond Relat. Mater. 108 107958Google Scholar

    [16]

    Huang T Y, Ji P Y, Huang J J, et al. 2016 Sci. China, Ser. G 59 645201Google Scholar

    [17]

    Saikat C T, McCarren D, Lee T, et al. 2015 IEEE Trans. Plasma Sci. 43 2754Google Scholar

    [18]

    Zhou H, Watanabe J, Miyake M, et al. 2007 Diamond Relat. Mater. 16 675Google Scholar

    [19]

    Ostrikov K K, Xu S 2007 Plasma-Aided Nanofabrication: from Plasma Sources to Nanoassembly (1st Ed.) (Berlin: Wiley-VCH) p182

    [20]

    Majumdar A, Behnke J F, Hippler R, et al. 2005 J. Phys. Chem. A 109 9371Google Scholar

    [21]

    Elvis O L, Borges F B, Rossi A M, et al. 2017 Vacuum 146 233Google Scholar

    [22]

    Zhou J, Martin I T, Ayers R, et al. 2006 Plasma Sources Sci. Technol. 154 714Google Scholar

    [23]

    Shui X Z, Ru G C 1989 J. Non-Cryst. Solids 112 161Google Scholar

    [24]

    Riccardi C, Barni R, Fontanesi M, et al. 2000 Czech. J. Phys. 50 389Google Scholar

    [25]

    Chen F F 1991 Plasma Phys. Controlled Fusion 334 339

    [26]

    Liu D P, Xu Y, Yang X F, Yu S J, Sun Q, Zhu A M, Ma T C 2002 Diamond Relat. Mater. 11 1491Google Scholar

    [27]

    Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. London, Ser. A 362 2477Google Scholar

    [28]

    Castiglioni C, Tommasini M 2007 Opt. Pura Apl. 40 169

    [29]

    Wu Y H, Qiao P W, Chong T, et al. 2010 Adv. Mater. 14 64

    [30]

    Goyette A N, Matsuda Y, Anderson L W, et al. 1998 J. Vac. Sci. Technol. A 16 337Google Scholar

    [31]

    Shiomi T, Nagai H, Kato K, et al. 2001 Diamond Relat. Mater. 10 388Google Scholar

  • 图 1  HMHX系统原理图

    Fig. 1.  Schematic diagram of HMHX system.

    图 2  (a)纯氩、CH4流量为85和145 sccm时的发射谱线图; (b)−(d)对应纯氩气、CH4流量为85和145 sccm时的放电照片图

    Fig. 2.  (a) OES of pure argon, methane with the flow rate of 85 and 145 sccm; (b)−(d) discharge photos of pure argon, methane with the flow rate of 85 and 145 sccm.

    图 3  CH, C2, H Balmer和Ar*的发射强度与CH4流量的关系

    Fig. 3.  Emission intensity of CH, C2, H Balmer and Ar* as a function of methane flow rate.

    图 4  不同CH4流量下的电子能量分布函数

    Fig. 4.  Electron energy distribution function at different methane flow rates.

    图 5  电子密度和放电气压随CH4流量增加的变化情况

    Fig. 5.  Electron density and discharge pressure as a function of methane flow.

    图 6  (a) +Ion谱图(CH4 85 sccm); (b)不同CH4流量下等离子体中+Ion含量变化; (c)中性粒子谱图(CH4 85 sccm); (d)不同CH4流量下等离子体中中性粒子含量变化. SEM, 二次电子倍增

    Fig. 6.  (a) +Ion mass spectrometry (CH4 85 sccm); (b) +Ion content in plasma under different methane flow; (c) RGA mass spectrometry (CH4 85 sccm); (d) RGA content in plasma under different methane flow. SEM, secondary electron multiplier.

    图 7  Ar/CH4螺旋波等离子体化学气相沉积制备碳基薄膜动力学过程

    Fig. 7.  Kinetic process of carbon-based thin films prepared by Ar/CH4 HWP-CVD.

    图 8  (a)不同CH4流量下碳基薄膜拉曼光谱图; (b)—(g)不同CH4流量情况下制备的碳基薄膜表面形貌图

    Fig. 8.  (a) Raman spectra of carbon-based thin films under different methane flow rates; (b)–(g) surface morphology of carbon nano-film under different methane flow.

    表 1  Ar/CH4螺旋波等离子体中物质反应过程

    Table 1.  Species reaction process in Ar/CH4 HWP-CVD.

    等离子体中
    主要物质
    产生过程参考文献
    Ar+/*${\rm{A} }{\rm{r} }\stackrel{ {{E} }\;{\rm{a} }{\rm{n} }{\rm{d} }\;{{H} } }{\longrightarrow }{\rm{Ar} }^{*}+{\rm{e} }^{-}$[22, 24]
    $ {\rm{Ar}}^{*}+{\rm{e}}^{-}\Rightarrow {\rm{Ar}}^{+}+{2{\rm{e}}}^{-} $
    $ {\rm{A}}{\rm{r}}+{\rm{e}}^{-}\Rightarrow {\rm{Ar}}^{*}+{\rm{e}}^{-} $
    H$ {\rm{Ar}}^{*}+{{\rm{H}}}_{2}\Rightarrow {{\rm{A}}{\rm{r}}{\rm{H}}}^{*}+{\rm{H}} $[20, 22, 24]
    $ {\rm{CH}}_{4}+{\rm{e}}\Rightarrow {{\rm{CH}}_{3}}^{+}+{\rm{H}}+2{\rm{e}} $
    $ \Rightarrow {{\rm{CH}}_{2}}^{+}+{{\rm{H}}}_{2} $
    $ \Rightarrow {\rm{C}}{\rm{H}}+{\rm{H}}+{{\rm{H}}}_{2} $
    $ \Rightarrow {\rm{C}}+{2{\rm{H}}}_{2} $
    CH$ {\rm{C}}+{\rm{CH}}_{4}\rightleftharpoons {\rm{C}}{\rm{H}}+{\rm{CH}}_{3} $[26]
    $ {\rm{CH}}_{2}^{*}+{\rm{H}}\leftrightarrows {\rm{C}}{\rm{H}}+{{\rm{H}}}_{2} $
    C2$ {\rm{A}}{\rm{r}}+{{\rm{C}}}_{2}{{\rm{H}}}_{2}\Rightarrow {{\rm{C}}}_{2}+{{\rm{H}}}_{2}+{\rm{A}}{\rm{r}} $[24]
    $ {\rm{C}}+{\rm{C}}{\rm{H}}\rightleftharpoons {{\rm{C}}}_{2}+{\rm{H}} $
    $ {{\rm{C}}}_{2}{\rm{H}}+{\rm{H}}\rightleftharpoons {{\rm{C}}}_{2}+{{\rm{H}}}_{2} $
    $ {{\rm{C}}}_{2}{\rm{H}}+{\rm{M}}\rightleftharpoons {{\rm{C}}}_{2}+{\rm{H}}+{\rm{M}} $
    C2H2$ {\rm{C}}{\rm{H}}+{\rm{CH}}_{2}\rightleftharpoons {{\rm{C}}}_{2}{{\rm{H}}}_{2}+{\rm{H}} $[24, 26]
    $ {\rm{CH}}_{2}+{\rm{CH}}_{2}\rightleftharpoons {{\rm{C}}}_{2}{{\rm{H}}}_{2}+{{\rm{H}}}_{2} $
    $ {\rm{CH}}_{2}+{\rm{CH}}_{2}\rightleftharpoons {{\rm{C}}}_{2}{{\rm{H}}}_{2}+2{\rm{H}} $
    CHn$ {\rm{Ar}}^{+}+{\rm{CH}}_{4}\rightleftharpoons {\rm{CH}}_{n}+\left(4-n\right){\rm{H}}+{\rm{A}}{\rm{r}} $[24]
    $ {\rm{e}}+{\rm{CH}}_{4}\rightleftharpoons {\rm{CH}}_{n}+\left(4-n\right){\rm{H}}+{\rm{e}} $
    下载: 导出CSV
  • [1]

    Dennison J R, Mark H, Greg S 1996 Spectroscopy 11 38

    [2]

    Roger N 2019 Encyclopedia of Biomedical Engineering (1st Ed.) (Amsterdam: Elsevier) p52

    [3]

    Robertson J 2002 Mater. Sci. Eng., R 37 129Google Scholar

    [4]

    Cheng C Y, Teii K 2012 IEEE Trans. Plasma Sci. 40 1783Google Scholar

    [5]

    Aisenberg S, Chabot R 1971 J. Appl. Phys. 42 2953Google Scholar

    [6]

    Savvides N, Window 1985 J. Vac. Sci. Technol., A 3 2386Google Scholar

    [7]

    Bleu Y, Bourquard F, Tite T, et al. 2018 Frontiers in Chemistry 6 572Google Scholar

    [8]

    Entesar A G, Al-Jabarti G A, Reem M A 2020 Mater. Res. Express 7 015002Google Scholar

    [9]

    Woehrl N, Ochedowski O, Gottlieb S, et al. 2014 AIP Adv. 4 047128Google Scholar

    [10]

    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001Google Scholar

    [11]

    Yu W, Wang B Z, Sun Y T, et al. 2003 J. Synth. Cryst. 323 272

    [12]

    Ji P Y, Chen J L, Huang T Y, et al. 2020 Appl. Phys. A 126 247Google Scholar

    [13]

    Chen J L, Ji P Y, Jin C G, et al. 2019 Plasma Sci. Technol. 21 025502Google Scholar

    [14]

    Ji P Y, Yu J, Huang T Y, et al. 2018 Plasma Sci. Technol. 20 025505Google Scholar

    [15]

    Ji P Y, Chen J L, Huang T Y, et al. 2020 Diamond Relat. Mater. 108 107958Google Scholar

    [16]

    Huang T Y, Ji P Y, Huang J J, et al. 2016 Sci. China, Ser. G 59 645201Google Scholar

    [17]

    Saikat C T, McCarren D, Lee T, et al. 2015 IEEE Trans. Plasma Sci. 43 2754Google Scholar

    [18]

    Zhou H, Watanabe J, Miyake M, et al. 2007 Diamond Relat. Mater. 16 675Google Scholar

    [19]

    Ostrikov K K, Xu S 2007 Plasma-Aided Nanofabrication: from Plasma Sources to Nanoassembly (1st Ed.) (Berlin: Wiley-VCH) p182

    [20]

    Majumdar A, Behnke J F, Hippler R, et al. 2005 J. Phys. Chem. A 109 9371Google Scholar

    [21]

    Elvis O L, Borges F B, Rossi A M, et al. 2017 Vacuum 146 233Google Scholar

    [22]

    Zhou J, Martin I T, Ayers R, et al. 2006 Plasma Sources Sci. Technol. 154 714Google Scholar

    [23]

    Shui X Z, Ru G C 1989 J. Non-Cryst. Solids 112 161Google Scholar

    [24]

    Riccardi C, Barni R, Fontanesi M, et al. 2000 Czech. J. Phys. 50 389Google Scholar

    [25]

    Chen F F 1991 Plasma Phys. Controlled Fusion 334 339

    [26]

    Liu D P, Xu Y, Yang X F, Yu S J, Sun Q, Zhu A M, Ma T C 2002 Diamond Relat. Mater. 11 1491Google Scholar

    [27]

    Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. London, Ser. A 362 2477Google Scholar

    [28]

    Castiglioni C, Tommasini M 2007 Opt. Pura Apl. 40 169

    [29]

    Wu Y H, Qiao P W, Chong T, et al. 2010 Adv. Mater. 14 64

    [30]

    Goyette A N, Matsuda Y, Anderson L W, et al. 1998 J. Vac. Sci. Technol. A 16 337Google Scholar

    [31]

    Shiomi T, Nagai H, Kato K, et al. 2001 Diamond Relat. Mater. 10 388Google Scholar

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响. 物理学报, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [3] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [4] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [5] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [6] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, 2018, 67(22): 227802. doi: 10.7498/aps.67.20181334
    [7] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [8] 郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东. 高气压直流辉光CH4/H2等离子体的气相过程诊断. 物理学报, 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [9] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [11] 彭志敏, 丁艳军, 杨乾锁, 姜宗林. 基于OH自由基A2Σ + →X2Πr 电子带系发射光谱的温度测量技术. 物理学报, 2011, 60(5): 053302. doi: 10.7498/aps.60.053302
    [12] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [13] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [14] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [15] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [16] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [17] 于 威, 张 立, 王保柱, 路万兵, 王利伟, 傅广生. 氢化纳米硅薄膜中氢的键合特征及其能带结构分析. 物理学报, 2006, 55(4): 1936-1941. doi: 10.7498/aps.55.1936
    [18] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [19] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [20] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
计量
  • 文章访问数:  6054
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-01-18
  • 上网日期:  2021-04-20
  • 刊出日期:  2021-05-05

/

返回文章
返回