搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Rydberg原子天线的太赫兹测量

陈志文 佘圳跃 廖开宇 黄巍 颜辉 朱诗亮

引用本文:
Citation:

基于Rydberg原子天线的太赫兹测量

陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮

Terahertz measurement based on Rydberg atomic antenna

Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang
PDF
HTML
导出引用
  • Rydberg原子在微波和太赫兹频段具有极大的电偶极矩, 利用量子干涉效应可实现对该频段电磁波场强的高灵敏探测, 理论上灵敏度可达到远高于现有探测技术的水平. 基于Rydberg原子量子效应的电磁场探测及精密测量技术在太赫兹的场强和功率计量、太赫兹通信和太赫兹成像等方面有着巨大的应用前景. 本文回顾了基于Rydberg原子量子干涉效应实现电磁波电场自校准和可溯源测量的基本理论和实验技术, 详细介绍了基于Rydberg原子的高灵敏太赫兹场强测量、太赫兹近场高速成像和太赫兹数字通信的基本原理和技术方案. 最后简单介绍了本研究团队正在开展的基于Rydberg原子的太赫兹探测工作.
    Rydberg atoms have large electric dipole moments in the microwave and terahertz frequency band. The detection of electromagnetic field intensity in this frequency band can be achieved by using quantum interference effects. Theoretically, this detection method can have a sensitivity much higher than the traditional detection methods. Therefore, electromagnetic field detection and precision measurement technology based on Rydberg atomic quantum effects has great application prospects in terahertz field strength and power measurement, terahertz communication and imaging. In this paper, we review the basic theory and experimental methods to realize the self-calibration and traceability measurement of electromagnetic field based on Rydberg atomic quantum effects. The principle and technical scheme of high-sensitivity terahertz field strength measurement, terahertz near-field high-speed imaging and terahertz digital communication based on Rydberg atom are introduced in detail. Finally, the processing terahertz detection work based on Rydberg atom by our research team is also mentioned briefly.
      通信作者: 黄巍, WeiHuang@m.scnu.edu.cn ; 颜辉, yanhui@scnu.edu.cn ; 朱诗亮, slzhunju@163.com
    • 基金项目: 国家自然科学基金(批准号: 91636218, 11804104)、广东省重点研发领域计划(批准号: 2019B030330001)和广州市科技计划(批准号: 201804020055, 201902020002)资助课题
      Corresponding author: Huang Wei, WeiHuang@m.scnu.edu.cn ; Yan Hui, yanhui@scnu.edu.cn ; Zhu Shi-Liang, slzhunju@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91636218, 11804104), the Key Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), and the Key Project of Science and Technology of Guangzhou, China (Grant Nos. 201804020055, 201902020002)
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38−49

    [2]

    Sedlacek J A, Schwettmann A, Kübler H, Low R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [3]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [4]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [5]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [6]

    Fan H Q, Kumar S, Daschner R, Kübler H, Shaffer J P 2014 Opt. Lett. 39 3030Google Scholar

    [7]

    Holloway C L, Gordon J A, Jeerts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169Google Scholar

    [8]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [9]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [10]

    Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015Google Scholar

    [11]

    Fan H Q, Kumar S, Kübler H, Shaffer J P 2016 J. Phys. B 49 104004Google Scholar

    [12]

    Kumar S, Fan H Q, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar

    [13]

    Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [14]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [15]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [16]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [17]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [18]

    Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T 2016 J. Opt. 18 093004Google Scholar

    [19]

    Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2020 IEEE Antennas Propag. Mag.Google Scholar

    [20]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [21]

    焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar

    Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar

    [22]

    Wade C G 2018 Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour (Switzerland: Springer Theses) pp55−63

    [23]

    Hughes I, Hase T 2010 Measurements and Their Uncertainties (Oxford: Oxford University Press) pp74−83

    [24]

    Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Comput. Phys. Commun. 220 319Google Scholar

    [25]

    Raimond J M, Goy P, Vitrant G, Haroche S 1981 J. Phys. Colloques 42 C8-37Google Scholar

    [26]

    Drabbels M, Noordam L D 1999 Appl. Phys. Lett. 74 1797Google Scholar

    [27]

    Gurtler A, Meijer A S, Van der Zande W J 2003 Appl. Phys. Lett. 83 222Google Scholar

    [28]

    Wade C G, Šibalić N, De Melo N R, Kondo J M, Adams C S, Weatherill K J 2016 Nat. Photonics 11 40Google Scholar

    [29]

    Mitrofanov O, Tan T, Mark P R, Bowden B, Harrington J A 2009 Appl. Phys. Lett. 94 171104Google Scholar

    [30]

    Bitzer A, Walther M 2008 Appl. Phys. Lett. 92 231101Google Scholar

    [31]

    Seo M A, Adam A J L, Kang J H, Lee J W, Jeoung S C, Park Q H, Planken P C M, Kim D S 2007 Opt. Express 15 11781Google Scholar

    [32]

    Downes L A, MacKellar A T, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027Google Scholar

    [33]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jrdens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [34]

    Jepsen P, Cooke D, Koch M 2011 Laser Photonics Rev. 5 124Google Scholar

    [35]

    Mittleman D M 2018 Opt. Express 26 9417Google Scholar

    [36]

    Hanzo L, Webb W T, keller T 2000 Single- and Multi-carrier Quadrature Amplitude Modulation: Principles and Applications for Personal Communications, WATM and Broadcasting (2nd Ed.) (Southampton: Wiley-IEEE Press) pp23−56

    [37]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

  • 图 1  (a) Rydberg原子量子干涉法测量微波电场强度能级示意图, 以及微波场作用前后探测光透射峰(中下); (b) 实验测量装置图[2]

    Fig. 1.  (a) Energy level diagram for the four-level system. The top part of the inset shows an example EIT feature without a microwave electric field. The bottom part of the inset shows an example EIT-AT with a microwave electric field. (b) Experimental set-up used for the experiments[2].

    图 2  电磁波光谱(太赫兹区域介于微波与红外之间)

    Fig. 2.  Electromagnetic spectrum (terahertz region between microwave and infrared).

    图 3  (a) Cs Rydberg态三步激发能级图; (b) 当$\varOmega_{\rm{p}} = \varOmega_{\rm{c}} = $$ 2 {\text {π}} \times5$ MHz, $ \varOmega_{\rm{R}} = 2 {\text {π}}\times8.4 $ MHz, $\varOmega_{\rm{T}} = 2 {\text {π}} \times[0,\;10,\;30, $$ 50]$ MHz时, 利用5能级光学布洛赫模型拟合Rydberg EIT-AT分裂(彩实线)及对应的洛伦兹线性拟合(阴影线)[22]

    Fig. 3.  (a) Three step ladder excitation scheme (Rydberg states in caesium); (b) when $ \varOmega_{\rm{p}} = \varOmega_{\rm{c}} = 2 {\text {π}} \times5 $ MHz, $ \varOmega_{\rm{R}} = 2 {\text {π}} \times8.4 $ MHz, $ \varOmega_{\rm{T}} = 2 {\text {π}} \times[0,\; 10,\;30,\;50]$ MHz, Autler-Townes splitting simulation for a 5-level optical Bloch model (coloured lines) with Lorenzian features (shaded lines)[22].

    图 4  基于Rydberg EIT的THz场强测量 (a) 当$ \varOmega_{\rm{T}} = 0 $时, 使用单洛伦兹线性拟合EIT透射峰; (b) 当$\varOmega_{\rm{T}}/2 {\text {π}}= $$ (5.2 \pm 1.4)$ MHz时, 使用单洛伦兹线性拟合EIT-AT 分裂峰; (c) 当$\varOmega_{\rm{T}}/2 {\text {π}}= (5.2 \pm 1.4)$ MHz时, 使用双洛伦兹线性拟合EIT-AT分裂峰; 下方数据为各自对应的拟合残差[22]

    Fig. 4.  THz electric field amplitude measurement: (a) Probe transmission line shape for $ \varOmega_{\rm{T}} = 0 $ and best fit line (dashed) is a single Lorentzian; (b) probe transmission line shape for $\varOmega_{\rm{T}}/2 {\text {π}}= (5.2 \pm 1.4)$ MHz and best fit line (dashed) is a single Lorentzian; (c) probe transmission line shape for $\varOmega_{\rm{T}}/2 {\text {π}} = (5.2 \pm 1.4)$ MHz and a summed pair of Lorentzian peaks. Below datas are residuals for different models[22].

    图 5  基于Rydberg原子太赫兹近场成像 (a) 实验系统装置; (b) 太赫兹荧光成像; (c) Rydberg原子在THz波段下共振跃迁频率对应的跃迁偶极矩; (d) 铯原子能级激发图; (e) 录制的视频[28]

    Fig. 5.  Real-time near-field THz imaging based on Rydberg atom: (a) Experimental layout; (b) spatially resolved THz intensity; (c) resonant transitions between Rydberg states in the THz band; (d) caesium atomic energy levels and laser excitation scheme; (e) real time video[28].

    图 6  太赫兹场强校准 (a) 利用EIT效应测量THz场强; (b) 相机校准, 相机获得的图像像素亮度与THz电场大小成正比[28]

    Fig. 6.  (a) THz electric field measurement using electromagnetically induced transparency (EIT); (b) camera calibration. The camera signal as a function of THz intensity[28].

    图 7  基于Rydberg原子太赫兹超高速成像 (a) 铯原子能级示意图; (b) THz场开启(绿色)和关闭(橙色)时的荧光光谱信号; (c) 实验装置图; (d) 放置在成像目标位置处的金属掩模[32]

    Fig. 7.  THz imaging at ultrahigh speed based on Rydberg atom: (a) Internal energy structure of caesium; (b) spectral characteristics of the fluorescence from the vapor, both with and without the THz field (green and orange lines, respectively); (c) diagram of the imaging setup described in this work; (d) metal mask (center) placed in the object plane of the system[32].

    图 8  超高速太赫兹成像视频 (a) 700 r/min转速下的光学斩波片运动; (b) 捕捉到自由下落的水[32]

    Fig. 8.  Ultrahigh-speed THz video: (a) THz video of an optical chopper wheel rotating at 700 r/min; (b) capture the dynamics of a water droplet in free fall[32].

    图 9  基于Rydberg原子天线的数字通信 (a) 实验装置图; (b) 能级示意图; (c) 使用光电探测器测量探测光; (d) 使用外差探头测量探测光; (e) Rydberg EIT (蓝色)和AT分裂(绿色); (f) 5种不同编码实例; (g) 接收到的8PSK相位信息; (h) 8PSK相位信息对应的相位轨迹[37]

    Fig. 9.  Digital communication based on Rydberg atom: (a) Experimental set-up used for the experiments; (b) energy level diagram for the a ladder-EIT system used for the experiments; (c) probe intensity modulation measured with a fast photodetector; (d) probe intensity modulation measured with an optical heterodyne; (e) Rydberg EIT (blue) and AT splitting (green) obtained by measuring probe transmission; (f) example demodulated transmission signals; (g) 8PSK sent and received phases; (h) phase constellation of the received phase in panel (g)[37].

    图 10  (a) Rydberg四能级系统; (b) 当电磁场拉比频率为$\varOmega_{\rm{T}} = 2 {\text {π}} \times[0,\; 1,\; 2.5,\; 5]$ MHz时, 分别对应的EIT-AT分裂模拟(黑色、红色、蓝色、绿色)

    Fig. 10.  (a) Rydberg four-level system; (b) Autler-Townes splitting simulation for $ \varOmega_{\rm{T}} = 2 {\text {π}} \times[0, \;1,\; 2.5,\; 5] $ MHz (black, red, blue and green solid line, respectively).

    图 11  (a) Rydberg太赫兹实验装置示意图; (b) 实验中测到的不同太赫兹电场强度下的EIT信号(黑色实线, 太赫兹场关闭; 黄、粉、绿色实线, 增大信号源功率分别对应的AT分裂$ \Delta $f = 6.29, 12.44, 34.57 MHz)

    Fig. 11.  (a) Schematic diagram of Rydberg terahertz experimental device; (b) transmission signal of probe laser (black solid line, without THz; yellow, pink and green solid line, with THz for $ \Delta $f = 6.29, 12.44, 34.57 MHz)

    表 1  铷和铯的Rydberg原子在THz频段的径向电偶极矩

    Table 1.  Radial part of electric dipole element between Rydberg states in the THz band for Rubidium and caesium.

    铷原子 铯原子
    径向电偶
    极矩/$a_{0} e$
    对应跃迁
    频率/THz
    径向电偶
    极矩/$a_{0} e$
    对应跃迁
    频率/THz
    509.687 0.342 513.125 0.339
    424.780 0.449 421.685 0.456
    376.294 0.542 379.324 0.535
    336.314 0.642 339.203 0.634
    302.964 0.750 301.320 0.759
    266.916 0.909 275.101 0.861
    263.079 0.933 265.677 0.919
    233.146 1.116 232.273 1.127
    229.824 1.145 208.101 1.315
    201.655 1.392 201.108 1.404
    下载: 导出CSV
  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38−49

    [2]

    Sedlacek J A, Schwettmann A, Kübler H, Low R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [3]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [4]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [5]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [6]

    Fan H Q, Kumar S, Daschner R, Kübler H, Shaffer J P 2014 Opt. Lett. 39 3030Google Scholar

    [7]

    Holloway C L, Gordon J A, Jeerts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169Google Scholar

    [8]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [9]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [10]

    Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015Google Scholar

    [11]

    Fan H Q, Kumar S, Kübler H, Shaffer J P 2016 J. Phys. B 49 104004Google Scholar

    [12]

    Kumar S, Fan H Q, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar

    [13]

    Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [14]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [15]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [16]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [17]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [18]

    Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T 2016 J. Opt. 18 093004Google Scholar

    [19]

    Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2020 IEEE Antennas Propag. Mag.Google Scholar

    [20]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [21]

    焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar

    Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar

    [22]

    Wade C G 2018 Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour (Switzerland: Springer Theses) pp55−63

    [23]

    Hughes I, Hase T 2010 Measurements and Their Uncertainties (Oxford: Oxford University Press) pp74−83

    [24]

    Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Comput. Phys. Commun. 220 319Google Scholar

    [25]

    Raimond J M, Goy P, Vitrant G, Haroche S 1981 J. Phys. Colloques 42 C8-37Google Scholar

    [26]

    Drabbels M, Noordam L D 1999 Appl. Phys. Lett. 74 1797Google Scholar

    [27]

    Gurtler A, Meijer A S, Van der Zande W J 2003 Appl. Phys. Lett. 83 222Google Scholar

    [28]

    Wade C G, Šibalić N, De Melo N R, Kondo J M, Adams C S, Weatherill K J 2016 Nat. Photonics 11 40Google Scholar

    [29]

    Mitrofanov O, Tan T, Mark P R, Bowden B, Harrington J A 2009 Appl. Phys. Lett. 94 171104Google Scholar

    [30]

    Bitzer A, Walther M 2008 Appl. Phys. Lett. 92 231101Google Scholar

    [31]

    Seo M A, Adam A J L, Kang J H, Lee J W, Jeoung S C, Park Q H, Planken P C M, Kim D S 2007 Opt. Express 15 11781Google Scholar

    [32]

    Downes L A, MacKellar A T, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027Google Scholar

    [33]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jrdens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [34]

    Jepsen P, Cooke D, Koch M 2011 Laser Photonics Rev. 5 124Google Scholar

    [35]

    Mittleman D M 2018 Opt. Express 26 9417Google Scholar

    [36]

    Hanzo L, Webb W T, keller T 2000 Single- and Multi-carrier Quadrature Amplitude Modulation: Principles and Applications for Personal Communications, WATM and Broadcasting (2nd Ed.) (Southampton: Wiley-IEEE Press) pp23−56

    [37]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

  • [1] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱. 物理学报, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [5] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211458
    [6] 樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的高灵敏微波探测与通信. 物理学报, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [7] 冯伟, 韦舒婷, 曹俊诚. 6G技术发展愿景与太赫兹通信. 物理学报, 2021, 70(24): 244303. doi: 10.7498/aps.70.20211729
    [8] 王大勇, 李兵, 戎路, 赵洁, 王云新, 翟长超. 连续太赫兹波双物距叠层定量相衬成像. 物理学报, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [9] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂. 物理学报, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [10] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [11] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [12] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [13] 王敏, 王俊峰, 吴秋宇, 黄一辛. 340GHz太赫兹室内信道测量及仿真研究. 物理学报, 2014, 63(15): 154101. doi: 10.7498/aps.63.154101
    [14] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [15] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化. 物理学报, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [17] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [19] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [20] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
计量
  • 文章访问数:  11258
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 修回日期:  2020-11-13
  • 上网日期:  2021-03-09
  • 刊出日期:  2021-03-20

/

返回文章
返回