搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温超导体电子结构和超导机理的角分辨光电子能谱研究

赵林 刘国东 周兴江

引用本文:
Citation:

高温超导体电子结构和超导机理的角分辨光电子能谱研究

赵林, 刘国东, 周兴江

Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors

Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang
PDF
HTML
导出引用
  • 超导是一种奇异的宏观量子现象. 100多年来, 已发现的超导体主要分为两类: 以金属或者合金为代表的常规超导体以及以铜氧化物和铁基高温超导体为代表的非常规超导体. 常规超导体的超导机理能被BCS超导理论完美解释, 但高温超导体的超导机理至今仍未达成共识, 已经成为凝聚态物理领域中长期争论且充满挑战的重大科学问题. 从实验上揭示非常规超导材料的微观电子结构, 是理解其奇异正常态和超导电性机理、建立新理论的前提和基础. 角分辨光电子能谱技术, 由于可以实现对材料中电子的能量、动量和自旋的直接测量, 在高温超导研究中发挥了重要的作用. 本文综述了我们利用角分辨光电子能谱技术在铜氧化物和铁基高温超导体电子结构和超导机理研究中取得的一些进展, 主要包括母体的电子结构、正常态的非费米液体行为、超导态的能带和超导能隙结构以及多体相互作用等. 这些结果为理解铜氧化物和铁基高温超导体的物性及超导机理提供了重要的信息.
    Superconductivity represents a magic macroscopic quantum phenomenon. There have been two major categories of superconductors: the conventional superconductors represented by metals or alloys; and the unconventional superconductors represented by cuprates and iron-based high-temperature superconductors. While the superconductivity mechanism of the conventional superconductors is successfully addressed by the BCS theory of superconductivity, no consensus has been reached in understanding the high temperature superconductivity mechanism for more than 30 years, which has become one of the most prominent issues in condensed matter physics. Revealing the microscopic electronic structure of unconventional superconductors is the prerequisite and foundation in understanding their superconductivity. Angle resolved photoelectron spectroscopy (ARPES) plays an important role in the study of unconventional superconductors because it can directly measure the electronic structure of materials. In this paper, our recent progress in the ARPES study of electronic structure and superconductivity mechanism of high temperature cuprate superconductors and iron-based superconductors is reviewed. It mainly includes the electronic structure of the parent compound, the non-Fermi liquid behavior in the normal state, the band and gap structure of the superconducting state, and the many-body interactions both in the normal and superconducting states. These results will provide important information in understanding the superconductivity mechanism of Cu-based and Fe-based superconductors.
      通信作者: 赵林, lzhao@iphy.ac.cn ; 周兴江, xjzhou@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0300300, 2017YFA0302900, 2018YFA0704200)、国家自然科学基金(批准号: 11888101, 11922414)和中国科学院战略先导项目(批准号: XDB25000000)资助的课题
      Corresponding author: Zhao Lin, lzhao@iphy.ac.cn ; Zhou Xing-Jiang, xjzhou@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300300, 2017YFA0302900, 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos. 11888101, 11922414), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, China (Grant No. XDB25000000)
    [1]

    Onnes H K, Commun 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Bardeen J, et al. 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    Mcmillan W. L 1968 Phys. Rev. 167 331Google Scholar

    [4]

    Drozdov A P, et al. 2019 Nature 569 528Google Scholar

    [5]

    Elliot Snider, Ranga P D, et al. 2020 Nature 586 373Google Scholar

    [6]

    Bednorz J G, et al. 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [7]

    Zhao Z X, et al. 1987 Chin. Sci. Bull. 3 177

    [8]

    Keimer B, et al. 2015 Nature 518 179Google Scholar

    [9]

    Kamihara Y, et al. 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [10]

    Ren Z A, et al. 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [11]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262Google Scholar

    [12]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538Google Scholar

    [13]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006Google Scholar

    [14]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 Journal of the American Chemical Society 130 3296

    [15]

    Hosono H, et al. 2015 Physica C 514 399Google Scholar

    [16]

    赵林, 刘国东, 周兴江 2018 物理学报 67 207413Google Scholar

    Zhao L, Liu G D, Zhou X J 2018 Acta Phys. Sin. 67 207413Google Scholar

    [17]

    Damascelli A, et al. 2003 Rev. Mod. Phys. 75 473Google Scholar

    [18]

    Campuzano J C et al. 2003 The Physics of Superconductors (Berlin: Springer)

    [19]

    Zhou X J, et al. 2007 Handbook of High-Temperature Superconductivity (Berlin: Springer) pp87−138

    [20]

    Zhou X J, et al. 2018 Rep. Prog. Phys. 81 062101Google Scholar

    [21]

    http://www.sc.doe.gov/bes/reports/files/SC_rpt.pdf

    [22]

    Liu G D, et al. 2008 Rev. Sci. Instrum. 79 023105Google Scholar

    [23]

    Zhang Y, et al. 2017 Nat. Commun. 8 15512Google Scholar

    [24]

    Thorsten Jacobs 2016 Ph. D. Dissertation, (Sweden: Stockholm University)

    [25]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645Google Scholar

    [26]

    Wang Z. C., et al. 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [27]

    Wang Z C, et al. 2017 Sci. Chin. Mater. 60 83Google Scholar

    [28]

    Fink J, et al. 1989 IBM J. Res. Dev. 33 372Google Scholar

    [29]

    Zhang Y, et al. 2011 Phys. Rev. B 83 054510Google Scholar

    [30]

    Graser S, et al. 2009 New J. Phys. 11 025016Google Scholar

    [31]

    Emery V J, et al. 1995 Nature 374 434Google Scholar

    [32]

    Renner C, et al. 1998 Phys. Rev. Lett. 80 149Google Scholar

    [33]

    Miyakawa N, et al. 2001 Phys. C 364-365 475Google Scholar

    [34]

    Wang Y, et al. 2006 Phys. Rev. B 73 024510Google Scholar

    [35]

    Saini N L, et al. 1997 Phys. Rev. Lett. 79 3467Google Scholar

    [36]

    Markiewicz R, et al. 1999 Phys. Rev. B 60 627Google Scholar

    [37]

    Chandra M V 2020 Rev. Mod. Phys. 92 031001Google Scholar

    [38]

    Mott, N F 1949 Proc. Phys. Soc. London, Sect. A 62 416Google Scholar

    [39]

    Mott N F 1956 Can. J. Phys. 34 1356Google Scholar

    [40]

    Mott N F 1974 Metal Insulator Transition (London: Taylor and Francis)

    [41]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

    [42]

    Hubbard J 1964 Proc. R. Soc. London, Ser. A 277 237 Hubbard J 1964 Proc. R. Soc. London, Ser. A 281 401

    [43]

    Anderson P W, Schrieffer R 1991 Phys. Today 44 54

    [44]

    Miller L L, et al. 2009 Phys. Rev. B 41 1921Google Scholar

    [45]

    Wells B O, et al. 1995 Phys. Rev. Lett. 74 964Google Scholar

    [46]

    Kim C, et al. 1998 Phys. Rev. Lett. 80 4245Google Scholar

    [47]

    Ronning F, et al. 1998 Science 282 2067Google Scholar

    [48]

    Ronning F, et al. 2005 Phys. Rev. B 71 094518Google Scholar

    [49]

    Hu C, et al. 2018 Chin. Phys. Lett. 35 067403Google Scholar

    [50]

    Shen K M, et al. 2004 Phys. Rev. Lett. 93 267002Google Scholar

    [51]

    Shen K M, et al. 2005 Science 307 901Google Scholar

    [52]

    Zhang Y X 2016 Sci. Bull. 61 1037Google Scholar

    [53]

    Hu C, et al. Unpublished

    [54]

    Gao Q, et al. 2020 Chin. Phys. Lett. 37 087402Google Scholar

    [55]

    Peng Y, Y, et al. 2013 Nat. Commun. 4 2459Google Scholar

    [56]

    Marshall D S, et al. 1996 Phys. Rev. Lett. 76 4841Google Scholar

    [57]

    Norman M R, et al. 1998 Nature 392 157Google Scholar

    [58]

    Shen K M, et al. 2005 Science 307 901

    [59]

    Kanigel A, et al. 2006 Nat. Phys. 2 447Google Scholar

    [60]

    Lee W S, et al. 2007 Nature 450 81Google Scholar

    [61]

    Hossain M A, et al. 2008 Nat. Phys. 4 527Google Scholar

    [62]

    Yang H B, et al. 2008 Nature 456 77Google Scholar

    [63]

    Doiron-Leyraud N, et al. 2007 Nature 447 565Google Scholar

    [64]

    Bangura A, et al. 2008 Phys. Rev. Lett. 100 047004Google Scholar

    [65]

    LeBoeuf D, et al. 2007 Nature 450 533Google Scholar

    [66]

    Yelland E A, et al. 2008 Phys. Rev. Lett. 100 047003Google Scholar

    [67]

    Meng J Q, et al. 2009 Nature 462 335Google Scholar

    [68]

    Aebi P, et al. 1994 Phys. Rev. Lett. 72 2757Google Scholar

    [69]

    Nakayama K, et al. 2006 Phys. Rev. B 74 054505Google Scholar

    [70]

    Chakravarty S, et al. 2001 Phys. Rev. B 63 094503Google Scholar

    [71]

    Chakravarty S, Kee H Y 2008 Proc. Natl. Acad. Sci. USA 105 8835

    [72]

    King P D C, et al. 2011 Phys. Rev. Lett. 106 127005Google Scholar

    [73]

    Zhou X J, et al. 2010 arXiv: 1012.3602

    [74]

    Yang K Y, et al. 2006 Phys. Rev. B 73 174501Google Scholar

    [75]

    Gao Q, et al. 2020 Phys. Rev. B 101 014513Google Scholar

    [76]

    Ai P, et al. 2019 Chin. Phys. Lett. 36 067402Google Scholar

    [77]

    Ding Y, et al. 2019 Chin. Phys. Lett. 36 017402Google Scholar

    [78]

    Meng J Q, et al. 2009 Phys. Rev. B 79 024517Google Scholar

    [79]

    Sun X, et al. 2018 Chin. Phys. Lett. 35 017401Google Scholar

    [80]

    Hashimoto M, et al. 2014 Nat. Phys. 10 483Google Scholar

    [81]

    Hashimoto M, et al. 2010 Nat. Phys. 6 414Google Scholar

    [82]

    He R H, et al. 2011 Science 331 1579Google Scholar

    [83]

    Bogdanov P V, et al. 2000 Phys. Rev. Lett. 85 2581Google Scholar

    [84]

    Johnson P, et al. 2001 Phys. Rev. Lett. 87 177007Google Scholar

    [85]

    Kaminski A, et al. 2001 Phys. Rev. Lett. 86 1070Google Scholar

    [86]

    Lanzara A, et al. 2001 Nature 412 510Google Scholar

    [87]

    Zhou X J, et al. 2003 Nature 423 398Google Scholar

    [88]

    Kordyuk A A, et al. 2006 Phys. Rev. Lett. 97 017002Google Scholar

    [89]

    Zhang W T, et al. 2008 Phys. Rev. Lett. 100 107002Google Scholar

    [90]

    Zhang W T, et al. 2008 Phys. Rev. Lett. 101 017002Google Scholar

    [91]

    He J F, et al. 2013 Phys. Rev. Lett. 111 107005Google Scholar

    [92]

    Peng Y Y, et al. 2013 Chin. Phys. Lett. 30 067402Google Scholar

    [93]

    Bardeen J. Nobel Lecture 1972 https://www.nobelprize.org/ prizes/physics/1972/bardeen/lecture/[2020-12-31]

    [94]

    Shi J R, et al. 2004 Phys. Rev. Lett. 92 186401Google Scholar

    [95]

    Bok J M, et al. 2010 Phys. Rev. B 81 174516Google Scholar

    [96]

    Zhao L, et al. 2011 Phys. Rev. B 83 184515Google Scholar

    [97]

    Zhang W T, et al. 2012 Phys. Rev. B 85 064514Google Scholar

    [98]

    Yun J H, et al. 2011 Phys. Rev. B 84 104521Google Scholar

    [99]

    Bok J M, et al. 2016 Sci. Adv. 2 e1501329Google Scholar

    [100]

    Huang J W, et al. 2019 Sci. Bull. 64 11Google Scholar

    [101]

    Zhao L, et al. 2008 Chin. Phys. Lett. 25 4402Google Scholar

    [102]

    Ding H, et al. 2008 Europhys. Lett. 83 47001Google Scholar

    [103]

    Wray L, et al. 2008 Phys. Rev. B 78 184508Google Scholar

    [104]

    Evtushinsky D V, et al. 2009 Phys. Rev. B 79 2784Google Scholar

    [105]

    Shimojima T, et al. 2011 Science 332 564Google Scholar

    [106]

    Wu D S, et al. 2020 Phys. Rev. B 101 224508Google Scholar

    [107]

    Shao S L, et al. 2013 Nat. Mater. 12 605Google Scholar

    [108]

    Kanayama S, et al. 2017 Phys. Rev. B 96 220509(R)Google Scholar

    [109]

    Hu Y, et al. 2020 Phys. Rev. B 102 115144Google Scholar

    [110]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [111]

    Zhang W H, et al. 2014 Chin. Phys. Lett. 31 017401Google Scholar

    [112]

    Sun Y, et al. 2014 Sci. Rep. 4 6040Google Scholar

    [113]

    Ge J F, et al. 2015 Nat. Mater. 14 285Google Scholar

    [114]

    Zhang Z C, et al. 2015 Sci. Bull. 60 1301Google Scholar

    [115]

    Pedersen A K, et al. 2020 Phys. Rev. Lett. 124 227002Google Scholar

    [116]

    Liu D F, et al. 2012 Nat. Commun. 3 931Google Scholar

    [117]

    Tan S Y, et al. 2013 Nat. Mater. 12 634Google Scholar

    [118]

    Lee J J, et al. 2014 Nature 515 245Google Scholar

    [119]

    Xu Y, et al. 2020 arXiv: 2010.15362

    [120]

    Nakayama K, et al. 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [121]

    Suzuki Y, et al. 2015 Phys. Rev. B 92 205117Google Scholar

    [122]

    Watson M D, et al. 2015 Phys. Rev. B 91 155106Google Scholar

    [123]

    Watson M D, et al. 2016 Phys. Rev. B 94 201107(R)Google Scholar

    [124]

    Watson M D, et al. 2017 New J. Phys. 19 103021Google Scholar

    [125]

    Liu D F, et al. 2018 Phys. Rev. X 8 031033Google Scholar

    [126]

    Kasahara S, et al. 2014 Proc. Natl. Acad. Sci. U.S.A. 111 16309

    [127]

    Sprau P, et al. 2017 Science 357 75Google Scholar

    [128]

    Hanaguri T, et al. 2019 Phys. Rev. Lett. 122 077001Google Scholar

    [129]

    Hu H, et al. 2018 Phys. Rev. B 98 220503(R)Google Scholar

    [130]

    Kang J, et al. 2018 Phys. Rev. Lett. 120 267001Google Scholar

    [131]

    Li C, et al. 2020 Phys. Rev. X 10 031033Google Scholar

  • 图 1  (a) ARPES的原理示意图; (b) 微观电子参量的直接获取

    Fig. 1.  (a) Schematic diagram for the angle-resolved photoemission spectroscopy (ARPES); (b) Direct detection of various fundamental physical quantities using ARPES.

    图 2  飞行时间电子能量分析器的结构示意图以及原位观测到的Sb(111)费米面(左下角)和探测器的结构图(右下角)[20]

    Fig. 2.  Schematic three dimensional drawing of ARToF electron energy analyzer. The analyzer consists of an electrostatic lens system and an MCP/DLD detector. The bottom-left inset shows a Fermi surface of Sb(111) that is in situ observed. The bottom-right inset shows a zoom-in view of the MCP/DLD unit[20].

    图 3  不同层数铜基高温超导体的晶体结构(从左到右依次为单层、双层和三层铜基超导体)[24]

    Fig. 3.  Crystal structure of cuprates with different layer numbers from 1 to 3[24].

    图 4  不同体系铁基超导体的晶体结构以及导电层的投影图[25]

    Fig. 4.  Crystal structures for several major classes of iron-based superconductors and their conducting layer projection[25].

    图 5  铜氧化物高温超导体和铁基超导体中的能带结构和费米面 (a) La2CuO4的能带结构; (b) La2CuO4的费米面; (c) 典型铁基超导体系的计算能带结构; (d) 典型铁基超导体系的费米面[29,30]

    Fig. 5.  Band structures and Fermi surfaces of high temperature cuprate superconductors and iron-based superconductors: (a) Band structures of La2CuO4; (b) Fermi surfaces of La2CuO4; (c) band structures of iron-based superconductors; (d) Fermi surfaces of iron-based superconductors [29,30]

    图 6  铜氧化物高温超导体的电子结构相图[8]

    Fig. 6.  Electronic phase diagram of high temperature cuprate superconductors[8].

    图 7  半填充关联电子系统能隙打开的情况[17] (a)无关联金属态; (b)莫特绝缘体态; (c)电荷转移绝缘体; (d) Zhang-Rice单态

    Fig. 7.  Opening of a correlation gap in the half-filled correlated materials[17]: (a) The system is metallic in the absence of electronic correlations; (b) a Mott insulator; (c) a charge-transfer insulator; (d) Zhang-Rice singlet (ZRS) states.

    图 8  Ca2CuO2Cl2的等能面 (a)在0.25 eV束缚能; (b)在0.6 eV束缚能. (c)观测到的两个潜在费米面. (d)沿着两个潜在费米面上的能带顶部能量分布[49]

    Fig. 8.  Constant energy contour of Ca2CuO2Cl2 at a binding energy of 0.25 eV (a) and 0.60 eV (b). (c) Two remnant Fermi surface sheets observed. (d) The energy distribution along the two remnant Fermi surface sheets[49].

    图 9  Ca3Cu2O4Cl2母体随电子掺杂的电子结构演化[53] (a)沿(0, 0)–(π, π)节点方向能带结构随掺杂的演变; (b)在(π, 0)反节点区域能带结构随掺杂的演变; (c), (d)分别对应于图(a)和图(b)的角积分光电子能谱; (e), (f)从实验结果获得的节点和反节点电子结构随掺杂演变的示意图[53]

    Fig. 9.  Electronic structure evolution with electron doping for the parent compound Ca3Cu2O4Cl2: (a) Doping evolution of bands along (0, 0)–(π, π) nodal direction; (b) Doping evolution of bands near (π, 0) antinodal region; (c), (d) Integrated energy distribution curves (EDCs) corresponding to Fig.(a) and Fig.(b), respectively; (e), (f) Schematic representations of electronic structure evolution with doping for the nodal region and antinodal region, respectively[53].

    图 10  Bi2212沿(0, 0)–(π, π)节点方向的能带结构, 在空穴掺杂浓度0−0.066之间随掺杂浓度的演变[54]

    Fig. 10.  Band structure evolution with hole doping in the doping range of 0−0.066 in Bi2212 measured along the (0, 0)–(π, π) nodal direction[54].

    图 11  Bi2201中沿节点方向能带结构随空穴掺杂浓度的演变. (a)−(g) 能带结构的演变; (h), (i) 光电子能谱谱线随空穴掺杂的变化; (j) Bi2201的电子相图[55]

    Fig. 11.  Band structure evolution with hole doping in Bi2201: (a)−(g) Band structure along (0, 0)–(π, π) nodal direction; (h) Photoemission spectra (EDCs) at Fermi momentum for different doping levels; (i)The corresponding symmetrized EDCs; (j) Electronic phase diagram of Bi2201[55].

    图 12  欠掺杂Bi2Sr2CuO6样品的费米面随掺杂的演化[67]: (a)−(d) 不同掺杂浓度(0.10, 0.11, 0.12, 0.16)的Bi2201观察到的费米面; (e)−(h)沿节点方向能带在费米能级处对应的动量分布曲线; (i)Bi2201观察到的费米面的总结

    Fig. 12.  Fermi surface evolution with hole doping for the underdoped Bi2Sr2CuO6[67]: (a)−(d) Fermi surface mappings for Bi2201 with different hole-doping levels(0.10, 0.11, 0.12 and 0.16); (e)−(h)Momentum distribution curves (MDCs) at the Fermi level for the bands measured along the nodal direction; (i) Summary of measured Fermi surface for Bi2201 with different doping levels.

    图 13  Bi2212中观察到的费米面和能带的选择性杂化[75] (a)Bi2212的主能带和超结构能带; (b) 实验测得的在第二象限的费米面结构; (c)费米面结构的选择性杂化能解释实验现象

    Fig. 13.  Selective band hybridization in Bi2212[75] (a) Schematic main Fermi surface and superstructure Fermi surface in Bi2212; (b) Measured Fermi surface in the second quadrant; (c) Selective band structure hybridization that can explain the observed result

    图 14  过掺杂Bi2212(Tc = 75 K)的费米面和能带结构[76]; (a), (b) 在20和90 K测量的费米面; (c), (d)沿两个动量方向测得的能带及在费米能级处的动量分布曲线

    Fig. 14.  Fermi surface and band structure for the overdoped Bi2212(Tc = 75 K)[76]: (a), (b) Fermi surface measured at 20 K and 90 K; (c), (d) Band structures measured along two momentum cuts, and the corresponding MDCs at the Fermi level.

    图 15  Bi2201过掺杂区域费米面随着掺杂浓度的演化[77]

    Fig. 15.  Fermi surface evolution with the hole doping level for Bi2201 in heavily overdoped region[77].

    图 16  最佳掺杂Bi2Sr1.6La0.4CuO6的超导能隙以及能隙的温度演化行为[78] (a) 测量的费米面; (b) 超导能隙随着动量的变化; (c) 超导能隙随温度的变化

    Fig. 16.  Momentum dependence and temperature dependence of the superconducting gap in the optimally-doped Bi2Sr1.6La0.4CuO6[78].

    图 17  最佳掺杂Bi2212 (Tc = 91 K)超导能隙的动量分布, 和反节点区域的费米动量随温度的演化[79]

    Fig. 17.  Momentum dependence of superconducting gap for the optimally-doped Bi2212 with Tc = 91 K and temperature dependence of the Fermi momentum near the antinodal region[79].

    图 18  过掺杂Bi2212(Tc = 75 K)中两个费米面上的超导能隙[76]

    Fig. 18.  Different superconducting gap observed on the two Fermi surface sheets in Bi2212 (Overdoped, Tc = 75 K)[76].

    图 19  最佳掺杂Bi2212沿着节点高对称方向的色散和有效电子自能[89]

    Fig. 19.  Band structure and effective self-energy along nodal direction for optimally-doped Bi2212[89].

    图 20  Bi2212的两个耦合模式的动量依赖关系[91]

    Fig. 20.  Momentum dependence of two coupling modes in Bi2212[91].

    图 21  Pb-Bi2201正常态的能带色散以及Eliashberg函数数据反演过程[96]

    Fig. 21.  Normal state dispersion of Pb-Bi2201 and inversion process of extracting the Eliashberg function[96].

    图 22  轻度欠掺杂Bi2212(Tc = 89 K)样品节点方向反演获得的正常自能和配对自能[97]

    Fig. 22.  Normal self energy and pairing self energy subtracted from lightly underdoped Bi2212 (Tc = 89 K)along nodal direction[97].

    图 23  通过角分辨光电子能谱测量获得的高温超导体Bi2212的正常自能和配对自能[99]

    Fig. 23.  Normal self-energy and pairing self-energy for Bi2212 from ARPES measurements[99].

    图 24  高温超导体Bi2212通过Eliashberg方程反演获得的正常关联谱函数以及配对关联谱函数[99]

    Fig. 24.  Normal Eliashberg function and pairing Eliashberg function for Bi2212[99].

    图 25  Ba0.6K0.4Fe2As2的两个费米面的超导态能隙对称性以及能隙和准粒子寿命的温度演化[100]

    Fig. 25.  Momentum dependent superconducting gap and temperature dependent gap and lifetime of single quasiparticle[100].

    图 26  KCa2Fe4As4F2的晶体结构, 能带结构和超导能隙[106]

    Fig. 26.  Crystal structure, band structure and superconducting gap symmetry for KCa2Fe4As4F2[106].

    图 27  单层FeSe/STO薄膜母体的ARPES和STM结果以及电子结构相图[109]

    Fig. 27.  ARPES, STS results Phase diagram for the single layer FeSe/STO film[109].

    图 28  (a)单层FeSe/STO薄膜的费米面以及(b)二次微分费米面; (c), (d)高对称方向的能带结构和对应的扣除高温能带后的结果; (e) 费米动量处能量分布曲线的尖峰与低谷之间差值的温度演化[119]

    Fig. 28.  (a), (b) Fermi surface and second derived Fermi surface for the single layer FeSe/STO film; (c), (d) Band structures along two cuts marked in Fig. (a) and band structures divided by their corresponding band structure at high temperature; (e) Temperature evolution of the difference between the peak and dip for the EDCs at kF[119].

    图 29  块材单畴FeSe在不同极化光条件下的费米面和能带[131]

    Fig. 29.  Fermi surface and band structure for single domain bulk FeSe measured under different polarization geometries[131].

  • [1]

    Onnes H K, Commun 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Bardeen J, et al. 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    Mcmillan W. L 1968 Phys. Rev. 167 331Google Scholar

    [4]

    Drozdov A P, et al. 2019 Nature 569 528Google Scholar

    [5]

    Elliot Snider, Ranga P D, et al. 2020 Nature 586 373Google Scholar

    [6]

    Bednorz J G, et al. 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [7]

    Zhao Z X, et al. 1987 Chin. Sci. Bull. 3 177

    [8]

    Keimer B, et al. 2015 Nature 518 179Google Scholar

    [9]

    Kamihara Y, et al. 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [10]

    Ren Z A, et al. 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [11]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262Google Scholar

    [12]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538Google Scholar

    [13]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006Google Scholar

    [14]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 Journal of the American Chemical Society 130 3296

    [15]

    Hosono H, et al. 2015 Physica C 514 399Google Scholar

    [16]

    赵林, 刘国东, 周兴江 2018 物理学报 67 207413Google Scholar

    Zhao L, Liu G D, Zhou X J 2018 Acta Phys. Sin. 67 207413Google Scholar

    [17]

    Damascelli A, et al. 2003 Rev. Mod. Phys. 75 473Google Scholar

    [18]

    Campuzano J C et al. 2003 The Physics of Superconductors (Berlin: Springer)

    [19]

    Zhou X J, et al. 2007 Handbook of High-Temperature Superconductivity (Berlin: Springer) pp87−138

    [20]

    Zhou X J, et al. 2018 Rep. Prog. Phys. 81 062101Google Scholar

    [21]

    http://www.sc.doe.gov/bes/reports/files/SC_rpt.pdf

    [22]

    Liu G D, et al. 2008 Rev. Sci. Instrum. 79 023105Google Scholar

    [23]

    Zhang Y, et al. 2017 Nat. Commun. 8 15512Google Scholar

    [24]

    Thorsten Jacobs 2016 Ph. D. Dissertation, (Sweden: Stockholm University)

    [25]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645Google Scholar

    [26]

    Wang Z. C., et al. 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [27]

    Wang Z C, et al. 2017 Sci. Chin. Mater. 60 83Google Scholar

    [28]

    Fink J, et al. 1989 IBM J. Res. Dev. 33 372Google Scholar

    [29]

    Zhang Y, et al. 2011 Phys. Rev. B 83 054510Google Scholar

    [30]

    Graser S, et al. 2009 New J. Phys. 11 025016Google Scholar

    [31]

    Emery V J, et al. 1995 Nature 374 434Google Scholar

    [32]

    Renner C, et al. 1998 Phys. Rev. Lett. 80 149Google Scholar

    [33]

    Miyakawa N, et al. 2001 Phys. C 364-365 475Google Scholar

    [34]

    Wang Y, et al. 2006 Phys. Rev. B 73 024510Google Scholar

    [35]

    Saini N L, et al. 1997 Phys. Rev. Lett. 79 3467Google Scholar

    [36]

    Markiewicz R, et al. 1999 Phys. Rev. B 60 627Google Scholar

    [37]

    Chandra M V 2020 Rev. Mod. Phys. 92 031001Google Scholar

    [38]

    Mott, N F 1949 Proc. Phys. Soc. London, Sect. A 62 416Google Scholar

    [39]

    Mott N F 1956 Can. J. Phys. 34 1356Google Scholar

    [40]

    Mott N F 1974 Metal Insulator Transition (London: Taylor and Francis)

    [41]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

    [42]

    Hubbard J 1964 Proc. R. Soc. London, Ser. A 277 237 Hubbard J 1964 Proc. R. Soc. London, Ser. A 281 401

    [43]

    Anderson P W, Schrieffer R 1991 Phys. Today 44 54

    [44]

    Miller L L, et al. 2009 Phys. Rev. B 41 1921Google Scholar

    [45]

    Wells B O, et al. 1995 Phys. Rev. Lett. 74 964Google Scholar

    [46]

    Kim C, et al. 1998 Phys. Rev. Lett. 80 4245Google Scholar

    [47]

    Ronning F, et al. 1998 Science 282 2067Google Scholar

    [48]

    Ronning F, et al. 2005 Phys. Rev. B 71 094518Google Scholar

    [49]

    Hu C, et al. 2018 Chin. Phys. Lett. 35 067403Google Scholar

    [50]

    Shen K M, et al. 2004 Phys. Rev. Lett. 93 267002Google Scholar

    [51]

    Shen K M, et al. 2005 Science 307 901Google Scholar

    [52]

    Zhang Y X 2016 Sci. Bull. 61 1037Google Scholar

    [53]

    Hu C, et al. Unpublished

    [54]

    Gao Q, et al. 2020 Chin. Phys. Lett. 37 087402Google Scholar

    [55]

    Peng Y, Y, et al. 2013 Nat. Commun. 4 2459Google Scholar

    [56]

    Marshall D S, et al. 1996 Phys. Rev. Lett. 76 4841Google Scholar

    [57]

    Norman M R, et al. 1998 Nature 392 157Google Scholar

    [58]

    Shen K M, et al. 2005 Science 307 901

    [59]

    Kanigel A, et al. 2006 Nat. Phys. 2 447Google Scholar

    [60]

    Lee W S, et al. 2007 Nature 450 81Google Scholar

    [61]

    Hossain M A, et al. 2008 Nat. Phys. 4 527Google Scholar

    [62]

    Yang H B, et al. 2008 Nature 456 77Google Scholar

    [63]

    Doiron-Leyraud N, et al. 2007 Nature 447 565Google Scholar

    [64]

    Bangura A, et al. 2008 Phys. Rev. Lett. 100 047004Google Scholar

    [65]

    LeBoeuf D, et al. 2007 Nature 450 533Google Scholar

    [66]

    Yelland E A, et al. 2008 Phys. Rev. Lett. 100 047003Google Scholar

    [67]

    Meng J Q, et al. 2009 Nature 462 335Google Scholar

    [68]

    Aebi P, et al. 1994 Phys. Rev. Lett. 72 2757Google Scholar

    [69]

    Nakayama K, et al. 2006 Phys. Rev. B 74 054505Google Scholar

    [70]

    Chakravarty S, et al. 2001 Phys. Rev. B 63 094503Google Scholar

    [71]

    Chakravarty S, Kee H Y 2008 Proc. Natl. Acad. Sci. USA 105 8835

    [72]

    King P D C, et al. 2011 Phys. Rev. Lett. 106 127005Google Scholar

    [73]

    Zhou X J, et al. 2010 arXiv: 1012.3602

    [74]

    Yang K Y, et al. 2006 Phys. Rev. B 73 174501Google Scholar

    [75]

    Gao Q, et al. 2020 Phys. Rev. B 101 014513Google Scholar

    [76]

    Ai P, et al. 2019 Chin. Phys. Lett. 36 067402Google Scholar

    [77]

    Ding Y, et al. 2019 Chin. Phys. Lett. 36 017402Google Scholar

    [78]

    Meng J Q, et al. 2009 Phys. Rev. B 79 024517Google Scholar

    [79]

    Sun X, et al. 2018 Chin. Phys. Lett. 35 017401Google Scholar

    [80]

    Hashimoto M, et al. 2014 Nat. Phys. 10 483Google Scholar

    [81]

    Hashimoto M, et al. 2010 Nat. Phys. 6 414Google Scholar

    [82]

    He R H, et al. 2011 Science 331 1579Google Scholar

    [83]

    Bogdanov P V, et al. 2000 Phys. Rev. Lett. 85 2581Google Scholar

    [84]

    Johnson P, et al. 2001 Phys. Rev. Lett. 87 177007Google Scholar

    [85]

    Kaminski A, et al. 2001 Phys. Rev. Lett. 86 1070Google Scholar

    [86]

    Lanzara A, et al. 2001 Nature 412 510Google Scholar

    [87]

    Zhou X J, et al. 2003 Nature 423 398Google Scholar

    [88]

    Kordyuk A A, et al. 2006 Phys. Rev. Lett. 97 017002Google Scholar

    [89]

    Zhang W T, et al. 2008 Phys. Rev. Lett. 100 107002Google Scholar

    [90]

    Zhang W T, et al. 2008 Phys. Rev. Lett. 101 017002Google Scholar

    [91]

    He J F, et al. 2013 Phys. Rev. Lett. 111 107005Google Scholar

    [92]

    Peng Y Y, et al. 2013 Chin. Phys. Lett. 30 067402Google Scholar

    [93]

    Bardeen J. Nobel Lecture 1972 https://www.nobelprize.org/ prizes/physics/1972/bardeen/lecture/[2020-12-31]

    [94]

    Shi J R, et al. 2004 Phys. Rev. Lett. 92 186401Google Scholar

    [95]

    Bok J M, et al. 2010 Phys. Rev. B 81 174516Google Scholar

    [96]

    Zhao L, et al. 2011 Phys. Rev. B 83 184515Google Scholar

    [97]

    Zhang W T, et al. 2012 Phys. Rev. B 85 064514Google Scholar

    [98]

    Yun J H, et al. 2011 Phys. Rev. B 84 104521Google Scholar

    [99]

    Bok J M, et al. 2016 Sci. Adv. 2 e1501329Google Scholar

    [100]

    Huang J W, et al. 2019 Sci. Bull. 64 11Google Scholar

    [101]

    Zhao L, et al. 2008 Chin. Phys. Lett. 25 4402Google Scholar

    [102]

    Ding H, et al. 2008 Europhys. Lett. 83 47001Google Scholar

    [103]

    Wray L, et al. 2008 Phys. Rev. B 78 184508Google Scholar

    [104]

    Evtushinsky D V, et al. 2009 Phys. Rev. B 79 2784Google Scholar

    [105]

    Shimojima T, et al. 2011 Science 332 564Google Scholar

    [106]

    Wu D S, et al. 2020 Phys. Rev. B 101 224508Google Scholar

    [107]

    Shao S L, et al. 2013 Nat. Mater. 12 605Google Scholar

    [108]

    Kanayama S, et al. 2017 Phys. Rev. B 96 220509(R)Google Scholar

    [109]

    Hu Y, et al. 2020 Phys. Rev. B 102 115144Google Scholar

    [110]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [111]

    Zhang W H, et al. 2014 Chin. Phys. Lett. 31 017401Google Scholar

    [112]

    Sun Y, et al. 2014 Sci. Rep. 4 6040Google Scholar

    [113]

    Ge J F, et al. 2015 Nat. Mater. 14 285Google Scholar

    [114]

    Zhang Z C, et al. 2015 Sci. Bull. 60 1301Google Scholar

    [115]

    Pedersen A K, et al. 2020 Phys. Rev. Lett. 124 227002Google Scholar

    [116]

    Liu D F, et al. 2012 Nat. Commun. 3 931Google Scholar

    [117]

    Tan S Y, et al. 2013 Nat. Mater. 12 634Google Scholar

    [118]

    Lee J J, et al. 2014 Nature 515 245Google Scholar

    [119]

    Xu Y, et al. 2020 arXiv: 2010.15362

    [120]

    Nakayama K, et al. 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [121]

    Suzuki Y, et al. 2015 Phys. Rev. B 92 205117Google Scholar

    [122]

    Watson M D, et al. 2015 Phys. Rev. B 91 155106Google Scholar

    [123]

    Watson M D, et al. 2016 Phys. Rev. B 94 201107(R)Google Scholar

    [124]

    Watson M D, et al. 2017 New J. Phys. 19 103021Google Scholar

    [125]

    Liu D F, et al. 2018 Phys. Rev. X 8 031033Google Scholar

    [126]

    Kasahara S, et al. 2014 Proc. Natl. Acad. Sci. U.S.A. 111 16309

    [127]

    Sprau P, et al. 2017 Science 357 75Google Scholar

    [128]

    Hanaguri T, et al. 2019 Phys. Rev. Lett. 122 077001Google Scholar

    [129]

    Hu H, et al. 2018 Phys. Rev. B 98 220503(R)Google Scholar

    [130]

    Kang J, et al. 2018 Phys. Rev. Lett. 120 267001Google Scholar

    [131]

    Li C, et al. 2020 Phys. Rev. X 10 031033Google Scholar

  • [1] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, 2022, 71(12): 127901. doi: 10.7498/aps.71.20220458
    [2] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [3] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [4] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [5] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [6] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [7] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [8] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] 郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角. SmFeAsO材料的正电子寿命研究. 物理学报, 2010, 59(4): 2789-2794. doi: 10.7498/aps.59.2789
    [10] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器. 物理学报, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [11] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变. 物理学报, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [12] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 物理学报, 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [13] 尤育新, 赵志刚, 王 进, 刘 楣. 高温超导体中约瑟夫森涡旋流阻的振荡效应. 物理学报, 2008, 57(11): 7252-7256. doi: 10.7498/aps.57.7252
    [14] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究. 物理学报, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [15] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [16] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, 2004, 53(11): 3902-3908. doi: 10.7498/aps.53.3902
    [17] 谭明秋, 陶向明, 徐小军, 何军辉, 叶高翔. MgCNi3的电子结构、光学性质与超导电性. 物理学报, 2003, 52(2): 463-467. doi: 10.7498/aps.52.463
    [18] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子. 物理学报, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [19] 曹天德, 黄清龙. 二分量高温超导机理. 物理学报, 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
    [20] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
计量
  • 文章访问数:  12301
  • PDF下载量:  891
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 修回日期:  2020-12-21
  • 上网日期:  2020-12-30
  • 刊出日期:  2021-01-05

/

返回文章
返回