搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高品质激光尾波场电子加速器

蒋康男 冯珂 柯林佟 余昌海 张志钧 秦志勇 刘建胜 王文涛 李儒新

引用本文:
Citation:

高品质激光尾波场电子加速器

蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新

High-quality laser wakefield electron accelerator

Jiang Kang-Nan, Feng Ke, Ke Lin-Tong, Yu Chang-Hai, Zhang Zhi-Jun, Qin Zhi-Yong, Liu Jian-Sheng, Wang Wen-Tao, Li Ru-Xin
PDF
HTML
导出引用
  • 激光尾波场电子加速的加速梯度相比于传统直线加速器高了3—4个量级, 对于小型化粒子加速器与辐射源的研制具有重要的意义, 成为当今国内外的研究热点. 台式化辐射源应用需求的提高, 特别是自由电子激光装置的快速发展, 对电子束流品质提出了更高的要求, 激光尾波场电子加速的束流品质和稳定性是目前实现新型辐射源的首要障碍. 本文归纳整理了中国科学院上海光学精密机械研究所电子加速研究团队十年来在研制台式化激光尾波场电子加速器过程中采取的方案和取得的进展. 例如率先提出了注入级和加速级分离的级联加速方案, 通过实验获得了GeV量级的电子束能量; 基于级联加速方式利用能量啁啾控制, 实验获得世界最高品质的电子束流; 通过优化激光系统稳定性和特殊的气体喷流结构, 获得稳定的高品质电子束流输出等. 这一系列实验结果有利于进一步推进激光尾波场电子加速器的应用.
    The acceleration gradient of laser wakefield acceleration is 3–4 orders of magnitude higher than that of state-of-the-art radio-frequency accelerators, which has unique advantages in the field of electron acceleration. With the development of application fields, higher requirements are put forward for the quality of electron beams. Achieving high stability, high energy, high charge, narrow pulse width and low emittance is the direction of long-term efforts in the field of electron acceleration. This article mainly summarizes the achievements of the relevant research teams in electron acceleration from Shanghai Institute of Optics and Fine Mechanics in recent years. The energy of the electron beam based on the acceleration of the laser wakefield is mainly limited by the dephasing length and the laser pumping loss length. Aiming at the problem that the two stages of laser wakefield acceleration cannot be controlled independently and the plasma density is difficult to balance, a cascaded acceleration scheme where the injection stage and the acceleration stage are separated is proposed. The injection stage has a higher plasma density and the acceleration stage has a lower plasma density. The acceleration stage with lower density has a longer dephasing length, so that a higher acceleration can be obtained without affecting electron injection. Finally, the electron beam energy of the order of GeV is obtained in experiment. In order to obtain a higher-quality electron beam, a low-energy-spread electron beam is obtained experimentally by using energy chirp controlling. The six-dimensional phase space brightness, which simultaneously characterizes multiple qualities such as electron beam emittance, charge and pulse width, is introduced. It is hard, with high quality only, to achieve long-distance transmission of electron beams and to generate free electron lasers. For the development of free electron lasers, the transmission and modulation of the electron beam are equally important. Taking into account the need to further optimize the acceleration of electrons from generation to realization of active control, higher quality and higher stability, it is necessary to monitor the interaction process between laser and plasma in time to obtain parameter through diagnosis. We have designed and optimized a variety of diagnostic solutions suitable for electron acceleration in the laser wakefield to achieve single-shot measurement of electron beams at different positions, such as using Betatron radiation inversion to measure ultra-low emittance. The effect of laser multifilament on the quality of the generated electron beam is also discussed.
      通信作者: 王文涛, wwt1980@siom.ac.cn ; 李儒新, ruxinli@mail.siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11991072, 11875065, 11127901)、中国科学院战略性先导科技专项(B类)(批准号: XDB16)、上海自然科学基金(批准号: 18JC1414800, 18ZR1444500)、中国科学技术部国家重点实验室计划和中国科学院青年创新促进会(批准号: Y201952)资助的课题
      Corresponding author: Wang Wen-Tao, wwt1980@siom.ac.cn ; Li Ru-Xin, ruxinli@mail.siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11991072, 11875065, 11127901), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB16), the Natural Science Foundation of Shanghai, China (Grant Nos. 18JC1414800, 18ZR1444500), the State Key Laboratory Program of Chinese Ministry of Science and Technology, and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y201952)
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [3]

    Geddes C G R, Toth C, Van Tilborg J, et al. 2004 Nature 431 538Google Scholar

    [4]

    Mangles S P D, Murphy C D, Najmudin Z, et al. 2004 Nature 431 535Google Scholar

    [5]

    Faure J, Glinec Y, Pukhov A, Kiselev S, et al. 2004 Nature 431 541Google Scholar

    [6]

    Leemans W P, Nagler B, Gonsalves A J, et al. 2006 Nat. Phys. 2 696Google Scholar

    [7]

    Lu W, Tzoufras M, Joshi C, et al. 2007 Phys. Rev. Spec. Top. Accel. Beams 10 061301Google Scholar

    [8]

    Wang X M, Zgadzaj R, Fazel N, et al. 2013 Nat. Commun. 4 1988Google Scholar

    [9]

    Leemans W P, Gonsalves A J, Mao H S, et al. 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [10]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [11]

    Chen M, Sheng Z M, Ma Y Y, et al. 2006 J. Appl. Phys. 99 056109Google Scholar

    [12]

    Froula D H, Clayton C, Döppner T, et al. 2009 Phys. Rev. Lett. 103 215006Google Scholar

    [13]

    Buck A, Wenz J, Xu J, et al. 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [14]

    Xu X L, Wu Y P, Zhang C J, et al. 2014 Phys. Rev. Spec. Top. Accel. Beams 17 061301Google Scholar

    [15]

    Hu R H, Lu H Y, Shou Y R, et al. 2016 Phys. Rev. Spec. Top. Accel. Beams 19 091301Google Scholar

    [16]

    Yu L L, Esarey E, Schroeder C B, et al. 2014 Phys. Rev. Lett. 112 125001Google Scholar

    [17]

    Thomas A G R, Murphy C D, Mangles S P D, et al. 2008 Phys. Rev. Lett. 100 255002Google Scholar

    [18]

    Pollock B B, Clayton C E, Ralph J E, et al. 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [19]

    Gonsalves A J, Nakamura K, Lin C, et al. 2011 Nat. Phys. 7 862Google Scholar

    [20]

    Liu J S, Xia C Q, Wang W T, et al. 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [21]

    Kim H T, Pae K H, Cha H J, et al. 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [22]

    Steinke S, VanTilborg J, Benedetti C, et al. 2016 Nature 530 190Google Scholar

    [23]

    Palastro J P, Shaw J L, Franke P, et al. 2020 Phys. Rev. Lett. 124 134802Google Scholar

    [24]

    Caizergues C, Smartsev S, Malka V, et al. 2020 Nat. Photonics 14 475Google Scholar

    [25]

    Maier A R, Delbos N M, Eichner T, et al. 2020 Phys. Rev. X 10 031039

    [26]

    Liang X Y, Leng Y X, Wang C, et al. 2007 Opt. Express 15 15335Google Scholar

    [27]

    Gu Y Q, Peng H S, Wang X X, et al. 2006 Phys. Plasmas 14 040703

    [28]

    Wen M, Wu H C, Jin L L, et al. 2012 Phys. Plasmas 19 083112Google Scholar

    [29]

    Tzoufras M, Lu W, Tsung F S, et al. 2008 Phys. Rev. Lett. 101 145002Google Scholar

    [30]

    Zhang L, Chen L M, Wang W M, et al. 2012 Appl. Phys. Lett. 100 014104Google Scholar

    [31]

    Lu W, Huang C, Zhou M, et al. 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [32]

    Wang W T, Li W T, Liu J S, et al. 2013 Appl. Phys. Lett. 103 243501Google Scholar

    [33]

    Xu Y, Lu J, Li W, et al. 2016 Opt. Laser Technol. 79 141Google Scholar

    [34]

    Wang W T, Li W T, Liu J S, et al. 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [35]

    Di mitri S, Cornacchia M, et al. 2014 Phys. Rep. 539 1Google Scholar

    [36]

    Zhang Z J, Li W T, Liu J S, et al. 2016 Phys. Plasmas 23 053106Google Scholar

    [37]

    Fang M, Zhang Z J, Wang W T, et al. 2018 Plasma Phys. Controlled Fusion 60 075008Google Scholar

    [38]

    Wu F X, Zhang Z X, Yang X J, et al. 2020 Opt. Laser Technol. 131 106453Google Scholar

    [39]

    Li W T, Liu J S, Wang W T, et al. 2013 Phys. Plasmas 20 113106Google Scholar

    [40]

    Qin Z Y, Yu C H, Wang W T, et al. 2018 Phys. Plasmas 25 023106Google Scholar

  • 图 1  基于自制890 TW激光器建立的激光尾波场电子加速实验平台

    Fig. 1.  Laser wakefield electron acceleration experiment platform based on self-made 890 TW laser.

    图 2  级联加速实验装置图[20]

    Fig. 2.  The experiment device of cascade acceleration[20].

    图 3  级联加速后的电子束能谱图[20]

    Fig. 3.  Electron beam energy spectrum based on cascade acceleration[20].

    图 4  能散度3%电子束能谱图[32]

    Fig. 4.  Electron beam energy spectrum with 3% energy spread[32].

    图 5  峰值能量>1 GeV能量电子能谱图[32]

    Fig. 5.  Electron beam energy spectrum with >1 GeV peak energy[32].

    图 6  级联加速后的电子束角分辨能谱[34]

    Fig. 6.  Angle resolved electron beams energy spectrum based on cascade acceleration[34].

    图 7  获得的高品质的电子束六维相空间亮度[34]

    Fig. 7.  The six-dimensional phase space brightness of obtained electron beams[34].

    图 8  U型尖峰结构形成等离子体分布模拟图[37]

    Fig. 8.  Simulation of plasma distribution formed by U-shaped spike structure[37].

    图 9  连续300发电子加速峰值能量分布及部分能谱图

    Fig. 9.  Accelerated peak energy distribution of 300 consecutive electrons and part of energy spectrum.

  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [3]

    Geddes C G R, Toth C, Van Tilborg J, et al. 2004 Nature 431 538Google Scholar

    [4]

    Mangles S P D, Murphy C D, Najmudin Z, et al. 2004 Nature 431 535Google Scholar

    [5]

    Faure J, Glinec Y, Pukhov A, Kiselev S, et al. 2004 Nature 431 541Google Scholar

    [6]

    Leemans W P, Nagler B, Gonsalves A J, et al. 2006 Nat. Phys. 2 696Google Scholar

    [7]

    Lu W, Tzoufras M, Joshi C, et al. 2007 Phys. Rev. Spec. Top. Accel. Beams 10 061301Google Scholar

    [8]

    Wang X M, Zgadzaj R, Fazel N, et al. 2013 Nat. Commun. 4 1988Google Scholar

    [9]

    Leemans W P, Gonsalves A J, Mao H S, et al. 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [10]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [11]

    Chen M, Sheng Z M, Ma Y Y, et al. 2006 J. Appl. Phys. 99 056109Google Scholar

    [12]

    Froula D H, Clayton C, Döppner T, et al. 2009 Phys. Rev. Lett. 103 215006Google Scholar

    [13]

    Buck A, Wenz J, Xu J, et al. 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [14]

    Xu X L, Wu Y P, Zhang C J, et al. 2014 Phys. Rev. Spec. Top. Accel. Beams 17 061301Google Scholar

    [15]

    Hu R H, Lu H Y, Shou Y R, et al. 2016 Phys. Rev. Spec. Top. Accel. Beams 19 091301Google Scholar

    [16]

    Yu L L, Esarey E, Schroeder C B, et al. 2014 Phys. Rev. Lett. 112 125001Google Scholar

    [17]

    Thomas A G R, Murphy C D, Mangles S P D, et al. 2008 Phys. Rev. Lett. 100 255002Google Scholar

    [18]

    Pollock B B, Clayton C E, Ralph J E, et al. 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [19]

    Gonsalves A J, Nakamura K, Lin C, et al. 2011 Nat. Phys. 7 862Google Scholar

    [20]

    Liu J S, Xia C Q, Wang W T, et al. 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [21]

    Kim H T, Pae K H, Cha H J, et al. 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [22]

    Steinke S, VanTilborg J, Benedetti C, et al. 2016 Nature 530 190Google Scholar

    [23]

    Palastro J P, Shaw J L, Franke P, et al. 2020 Phys. Rev. Lett. 124 134802Google Scholar

    [24]

    Caizergues C, Smartsev S, Malka V, et al. 2020 Nat. Photonics 14 475Google Scholar

    [25]

    Maier A R, Delbos N M, Eichner T, et al. 2020 Phys. Rev. X 10 031039

    [26]

    Liang X Y, Leng Y X, Wang C, et al. 2007 Opt. Express 15 15335Google Scholar

    [27]

    Gu Y Q, Peng H S, Wang X X, et al. 2006 Phys. Plasmas 14 040703

    [28]

    Wen M, Wu H C, Jin L L, et al. 2012 Phys. Plasmas 19 083112Google Scholar

    [29]

    Tzoufras M, Lu W, Tsung F S, et al. 2008 Phys. Rev. Lett. 101 145002Google Scholar

    [30]

    Zhang L, Chen L M, Wang W M, et al. 2012 Appl. Phys. Lett. 100 014104Google Scholar

    [31]

    Lu W, Huang C, Zhou M, et al. 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [32]

    Wang W T, Li W T, Liu J S, et al. 2013 Appl. Phys. Lett. 103 243501Google Scholar

    [33]

    Xu Y, Lu J, Li W, et al. 2016 Opt. Laser Technol. 79 141Google Scholar

    [34]

    Wang W T, Li W T, Liu J S, et al. 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [35]

    Di mitri S, Cornacchia M, et al. 2014 Phys. Rep. 539 1Google Scholar

    [36]

    Zhang Z J, Li W T, Liu J S, et al. 2016 Phys. Plasmas 23 053106Google Scholar

    [37]

    Fang M, Zhang Z J, Wang W T, et al. 2018 Plasma Phys. Controlled Fusion 60 075008Google Scholar

    [38]

    Wu F X, Zhang Z X, Yang X J, et al. 2020 Opt. Laser Technol. 131 106453Google Scholar

    [39]

    Li W T, Liu J S, Wang W T, et al. 2013 Phys. Plasmas 20 113106Google Scholar

    [40]

    Qin Z Y, Yu C H, Wang W T, et al. 2018 Phys. Plasmas 25 023106Google Scholar

  • [1] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] 唐传祥, 邓秀杰. 稳态微聚束加速器光源. 物理学报, 2022, 71(15): 152901. doi: 10.7498/aps.71.20220486
    [3] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] 华津宇, 盛政明. 电子束尾波对质子束自调制尾波相速度影响的理论和数值模拟研究. 物理学报, 2021, 70(13): 139401. doi: 10.7498/aps.70.20202086
    [5] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [6] 祝昕哲, 刘维媛, 陈民. 锐真空-等离子体边界倾角对激光尾波场加速中电子注入的影响. 物理学报, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [7] 谭放, 张晓辉, 朱斌, 李纲, 吴玉迟, 于明海, 杨月, 闫永宏, 杨靖, 范伟, 董克攻, 卢峰, 谷渝秋. 基于混合注入机制的级联尾场电子加速. 物理学报, 2019, 68(17): 175201. doi: 10.7498/aps.68.20190484
    [8] 李荣凤, 高树超, 肖朝凡, 徐智怡, 薛兴泰, 刘建波, 赵研英, 陈佳洱, 卢海洋, 颜学庆. 激光尾波场驱动准连续小角度电子束研究进展. 物理学报, 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [9] 王通, 王晓方. 激光尾场加速电子的密度梯度注入的解析处理. 物理学报, 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [10] 张枫, 黄硕, 李晓锋, 余芹, 顾彦珺, 孔青. 双束平行入射电子束引导的自注入电子加速效果的研究. 物理学报, 2013, 62(24): 242901. doi: 10.7498/aps.62.242901
    [11] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [12] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验. 物理学报, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [13] 张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正. 一维漂移空间内强流电子束的稳态传输特性. 物理学报, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [14] 王 剑, 谷渝秋, 蔡达峰, 焦春晔, 吴玉迟, 何颖玲, 滕 建, 杨向东, 王 磊, 赵宗清. 激光尾波场中光子加速研究. 物理学报, 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [15] 高远, 翁甲强, 方锦清, 罗晓曙. 强流加速器中束晕-混沌的小波间隔反馈控制. 物理学报, 2001, 50(8): 1440-1446. doi: 10.7498/aps.50.1440
    [16] 常文蔚, 张立夫, 邵福球. 激光等离子体波电子加速器. 物理学报, 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [17] 朱莳通, 沈文达, 邱锡铭, 王之江. 激光加速器中电子能量增益的广义协变推导. 物理学报, 1989, 38(4): 559-566. doi: 10.7498/aps.38.559
    [18] 庄杰佳. 逆契仑柯夫聚焦激光电子加速器. 物理学报, 1984, 33(9): 1255-1260. doi: 10.7498/aps.33.1255
    [19] 贺凯芬. 电子束丝化扰动的孤立波解. 物理学报, 1983, 32(7): 954-959. doi: 10.7498/aps.32.954
    [20] 何国柱. 周期场聚焦电子束. 物理学报, 1958, 14(5): 376-392. doi: 10.7498/aps.14.376
计量
  • 文章访问数:  10024
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2020-12-31
  • 上网日期:  2021-04-08
  • 刊出日期:  2021-04-20

/

返回文章
返回