搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在破缺媒介中通过偏压增强粒子扩散

范黎明 包景东

引用本文:
Citation:

在破缺媒介中通过偏压增强粒子扩散

范黎明, 包景东

Diffusion enhancement of the particle in disorder medium by biased force

Fan Li-Ming, Bao Jing-Dong
PDF
HTML
导出引用
  • 研究了偏压控制下的粒子在破缺媒介中的扩散动力学. 基于平均首次通过时间理论导出了粒子在偏压破缺势场中的有效扩散系数的近似表达式. 结果显示粒子的有效扩散系数被显著地增大, 用粒子概率密度分布函数的波包展宽对此机制给出了解释. 进一步, 本文提出有效动力学温度和有效阻尼相结合的概念, 对爱因斯坦扩散关系进行了推广.
    The diffusion dynamics of a particle in the biased disorder medium is investigated in this paper. Based on the mean first passage time (MFPT) theory, the analytical approximate expression of effective diffusion coefficient of a particle in the biased disorder potential is obtained. The results show that the effective diffusion of a particle in the biased disorder potential is significantly enhanced. We explain the enhancement mechanism by using the wave packet broadening of probability density distribution function. In addition, we propose the concepts of effective kinetic temperature and effective friction, and further find that the effective diffusion behavior of a particle strongly depends on the biased force.
      通信作者: 包景东, jdbao@bnu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 11735005)资助的课题
      Corresponding author: Bao Jing-Dong, jdbao@bnu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11735005)
    [1]

    Su Y, Ma X G, Lai P, Tong P 2017 Soft Matter 13 4773Google Scholar

    [2]

    Lindenberg K, Sancho J M, Khoury M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1240004Google Scholar

    [3]

    Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar

    [4]

    Lifson S, Jackson J L 1962 J. Chem. Phys. 36 2410Google Scholar

    [5]

    Longobardi L, Massarotti D, Rotoli G, Stornaiuolo D, Papari G, Kawakami A, Pepe G P, Barone A, Tafuri F 2011 Phys. Rev. B 84 184504Google Scholar

    [6]

    Fulde P, Pietronero L, Schneider W R, Strässler S 1975 Phys. Rev. Lett. 35 1776Google Scholar

    [7]

    Kurrer C, Schulten K 1995 Phys. Rev. E 51 6213Google Scholar

    [8]

    Reimann P 2002 Phys. Rep. 361 57Google Scholar

    [9]

    Lee S H, Grier D G 2006 Phys. Rev. Lett. 96 190601Google Scholar

    [10]

    Blickle V, Speck T, Seifert U, Bechinger C 2007 Phys. Rev. E 75 060101Google Scholar

    [11]

    Schiavoni M, Sanchez-Palencia L, Renzoni F, Grynberg G 2003 Phys. Rev. Lett. 90 094101Google Scholar

    [12]

    Lü K, Bao J D 2007 Phys. Rev. E 76 061119Google Scholar

    [13]

    Shi X Y, Bao J D 2019 Physica A 514 203Google Scholar

    [14]

    Gleeson J P, Sancho J M, Lacasta A M, Lindenberg K 2006 Phys. Rev. E 73 041102Google Scholar

    [15]

    Khoury M, Lacasta A M, Sancho J M, Lindenber K 2011 Phys. Rev. Lett. 106 090602Google Scholar

    [16]

    Slutsky M, Kardar M, Mirny L A 2004 Phys. Rev. E 69 061903Google Scholar

    [17]

    Bouchaud J P, Georges A 1990 Phys. Rep. 195 127Google Scholar

    [18]

    Hänggi P, Talkner P, Borkovec M 1990 Rev. Mod. Phys. 62 251Google Scholar

    [19]

    Hanes R D L, Dalle-Ferrier C, Schmiedeberg M, Jenkins M C, Egelhaaf S U 2012 Soft Matter 8 2714Google Scholar

    [20]

    Harris S J, Timmons A, Baker D R, Monroe C 2010 Chem. Phys. Lett. 485 265Google Scholar

    [21]

    Sieminskas L, Ferguson M, Zerda T W, Couch E 1997 J. Sol-Gel Sci. Technol. 8 1105Google Scholar

    [22]

    Kafri K, Lubensky D K, Nelson D R 2004 Biophys. J. 86 3373Google Scholar

    [23]

    Smith P, Morrison I E G, Wilson K M, Fernandez N, Cherry R J 1999 Biophys. J. 76 3331Google Scholar

    [24]

    Hyeon C, Thirumalai D 2003 Proc. Natl. Acad. Sci. U.S.A. 100 10249Google Scholar

    [25]

    Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2001 Phys. Rev. Lett. 87 010602Google Scholar

    [26]

    Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2002 Phys. Rev. E 65 031104Google Scholar

    [27]

    Evstigneev M, Zvyagolskaya O, Bleil S, Eichhorn R, Bechinger C, Reimann P 2008 Phys. Rev. E 77 041107Google Scholar

    [28]

    Lindner B 2010 New J. Phys. 12 063026Google Scholar

    [29]

    Simon M S, Sancho J M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1250026Google Scholar

    [30]

    Simon M S, Sancho J M, Lindenberg K 2013 Phys. Rev. E 88 062105Google Scholar

    [31]

    包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第111页

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p111 (in Chinese)

    [32]

    Hu M, Bao J D 2018 Phys. Rev. E 97 062143Google Scholar

    [33]

    Bao J D, Liu J 2013 Phys. Rev. E 88 022153Google Scholar

    [34]

    Reimann P, Eichhorn R 2008 Phys. Rev. Lett. 101 180601Google Scholar

    [35]

    Nixon G I, Slater G W 1996 Phys. Rev. E 53 4969Google Scholar

    [36]

    Yeh D C, Huntington H B 1984 Phys. Rev. Lett. 53 1469Google Scholar

    [37]

    Coh S, Gannett W, Zettl A, Cohen M L, Louie S G 2013 Phys. Rev. Lett. 110 185901Google Scholar

    [38]

    Berkovich R, Garcia-Manes S, Urbakh M, Klafter J, Fernandez J M 2010 Biophys. J. 98 2692Google Scholar

    [39]

    Smith S B, Cui Y J, Bustamante C 1996 Science 271 795Google Scholar

    [40]

    Liphardt J, Onoa B, Smith S B, Tinoco Jr. I, Bustamante C 2001 Science 292 733Google Scholar

  • 图 1  偏压OU-RCP及OU的空间导数RCP示意图. 参数选取为$ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $, $ \tilde{F} = 0.8 $

    Fig. 1.  The schematic diagram of the biased OU-RCP and the derivative of OU-RCP. The parameters used are $ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $, $ \tilde{F} = 0.8 $.

    图 2  偏压随机势中粒子的有效扩散系数$ D_{\rm eff} $$ \tilde{F} $的变化. 这里比较了OU-RCP和OU的导数RCP中的结果. 内图: 继续增大$ \tilde{F} $, OU的导数RCP对应的绿色方块曲线的变化趋势. 参数选取为$ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $

    Fig. 2.  Dependence of the effective diffusion coefficient $ D_{\rm eff} $ on the biased force $ \tilde{F} $ in $ \tilde{V}_{\rm br} $. Here, the results of OU-RCP and OU’s derivative RCP are compared. Illustration: The trend of the green square curve when continuing to increase $ \tilde{F} $. The parameters used are $ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $.

    图 3  分别叠加OU-RCP, OU的导数RCP的偏压随机势中粒子的概率密度分布函数. 内图: 叠加OU-RCP, OU的导数RCP的偏压随机势$ V_{\rm br} $的示意图. 参数选取为$ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $, $ \tilde{F} = 10.0 $

    Fig. 3.  The PDF of a particle in $ V_{\rm br} $, the OU-RCP and OU’s derivative RCP are considered. Illustration: the schematic diagram of $ V_{\rm br} $. The parameters used are $\tilde{\lambda} = $$ 0.5$, $ \tilde{D} = 0.1 $, $ \tilde{F} = 10.0 $

    图 4  3种势$ \tilde{V}_{\rm br} $, $ \tilde{V}_{\rm bpr} $$ \tilde{V}_{\rm bp} $中粒子的有效扩散系数$ D_{\rm eff} $作为偏压力$ \tilde{F} $的函数. 比较了解析和模拟结果. 参数选取为$ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $

    Fig. 4.  The effective diffusion coefficient $ D_{\rm eff} $ of a particle as a function of the biased force $ \tilde{F} $ in $ \tilde{V}_{\rm br} $, $ \tilde{V}_{\rm bpr} $ and $ \tilde{V}_{\rm bp} $. The analytical result and simulation result are compared. The parameters used are $ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $.

    图 5  $ \tilde{F} = 1.0 $时, $ \tilde{V}_{\rm bp} $, $ \tilde{V}_{\rm br} $$ \tilde{V}_{\rm bpr} $中粒子的概率密度分布函数($(\rm a)—(\rm c)$); (d) $ \tilde{F} = 1.7 $(图4的红线加三角形曲线的最大值对应的偏压力)时, $ \tilde{V}_{\rm bpr} $中粒子的概率密度分布函数. 内图: $ \tilde{F} = 1.0 $时的$ \tilde{V}_{\rm br} $, $ \tilde{V}_{\rm bpr} $示意图. 参数选取为$ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $

    Fig. 5.  The PDF corresponding to $ \tilde{V}_{\rm bp} $, $ \tilde{V}_{\rm br} $ and $ \tilde{V}_{\rm bpr} $ for $ \tilde{F} = 1.0 $ ((a)–(c)); (d) the PDF of particle in $ \tilde{V}_{\rm bpr} $ for $ \tilde{F} = 1.7 $ (the optimal biased force for $ \tilde{V}_{\rm bpr} $ in Fig. 4). Illustration: the schematic diagram of $ \tilde{V}_{\rm br} $, $ \tilde{V}_{\rm bpr} $ for $ \tilde{F} = 1.0 $. The parameters used are $ \tilde{\lambda} = 0.5 $, $ \tilde{D} = 0.1 $.

    表 1  3种势结构下粒子的有效动力学温度$k_{\rm B}T^*$及有效阻尼$\gamma^*$随偏压力的变化

    Table 1.  The effective kinetic temperature $k_{\rm B}T^*$ and effective friction $\gamma^*$ of a particle under the three potential structures change with the biased force.

    $\tilde F=0$ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
    偏压周期势 $k_{\rm B}T^*$
    $\gamma^*$
    0.20
    95.12
    0.21
    4.11
    0.45
    0.47
    0.42
    1.06
    0.32
    1.48
    0.28
    1.3
    0.25
    1.2
    0.24
    1.17
    0.23
    1.09
    偏压周期随机势 $k_{\rm B}T^*$
    $\gamma^*$
    0.20
    360.32
    0.21
    200.62
    0.22
    8.56
    0.36
    0.22
    1.09
    0.06
    0.62
    0.07
    0.32
    0.84
    0.31
    0.60
    0.23
    1.31
    偏压随机势 $k_{\rm B}T^*$
    $\gamma^*$
    0.20
    77.43
    0.22
    10.28
    0.28
    0.83
    0.62
    0.13
    1.09
    0.08
    0.34
    0.09
    0.25
    1.21
    0.26
    0.67
    0.27
    1.30
    下载: 导出CSV
  • [1]

    Su Y, Ma X G, Lai P, Tong P 2017 Soft Matter 13 4773Google Scholar

    [2]

    Lindenberg K, Sancho J M, Khoury M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1240004Google Scholar

    [3]

    Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar

    [4]

    Lifson S, Jackson J L 1962 J. Chem. Phys. 36 2410Google Scholar

    [5]

    Longobardi L, Massarotti D, Rotoli G, Stornaiuolo D, Papari G, Kawakami A, Pepe G P, Barone A, Tafuri F 2011 Phys. Rev. B 84 184504Google Scholar

    [6]

    Fulde P, Pietronero L, Schneider W R, Strässler S 1975 Phys. Rev. Lett. 35 1776Google Scholar

    [7]

    Kurrer C, Schulten K 1995 Phys. Rev. E 51 6213Google Scholar

    [8]

    Reimann P 2002 Phys. Rep. 361 57Google Scholar

    [9]

    Lee S H, Grier D G 2006 Phys. Rev. Lett. 96 190601Google Scholar

    [10]

    Blickle V, Speck T, Seifert U, Bechinger C 2007 Phys. Rev. E 75 060101Google Scholar

    [11]

    Schiavoni M, Sanchez-Palencia L, Renzoni F, Grynberg G 2003 Phys. Rev. Lett. 90 094101Google Scholar

    [12]

    Lü K, Bao J D 2007 Phys. Rev. E 76 061119Google Scholar

    [13]

    Shi X Y, Bao J D 2019 Physica A 514 203Google Scholar

    [14]

    Gleeson J P, Sancho J M, Lacasta A M, Lindenberg K 2006 Phys. Rev. E 73 041102Google Scholar

    [15]

    Khoury M, Lacasta A M, Sancho J M, Lindenber K 2011 Phys. Rev. Lett. 106 090602Google Scholar

    [16]

    Slutsky M, Kardar M, Mirny L A 2004 Phys. Rev. E 69 061903Google Scholar

    [17]

    Bouchaud J P, Georges A 1990 Phys. Rep. 195 127Google Scholar

    [18]

    Hänggi P, Talkner P, Borkovec M 1990 Rev. Mod. Phys. 62 251Google Scholar

    [19]

    Hanes R D L, Dalle-Ferrier C, Schmiedeberg M, Jenkins M C, Egelhaaf S U 2012 Soft Matter 8 2714Google Scholar

    [20]

    Harris S J, Timmons A, Baker D R, Monroe C 2010 Chem. Phys. Lett. 485 265Google Scholar

    [21]

    Sieminskas L, Ferguson M, Zerda T W, Couch E 1997 J. Sol-Gel Sci. Technol. 8 1105Google Scholar

    [22]

    Kafri K, Lubensky D K, Nelson D R 2004 Biophys. J. 86 3373Google Scholar

    [23]

    Smith P, Morrison I E G, Wilson K M, Fernandez N, Cherry R J 1999 Biophys. J. 76 3331Google Scholar

    [24]

    Hyeon C, Thirumalai D 2003 Proc. Natl. Acad. Sci. U.S.A. 100 10249Google Scholar

    [25]

    Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2001 Phys. Rev. Lett. 87 010602Google Scholar

    [26]

    Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2002 Phys. Rev. E 65 031104Google Scholar

    [27]

    Evstigneev M, Zvyagolskaya O, Bleil S, Eichhorn R, Bechinger C, Reimann P 2008 Phys. Rev. E 77 041107Google Scholar

    [28]

    Lindner B 2010 New J. Phys. 12 063026Google Scholar

    [29]

    Simon M S, Sancho J M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1250026Google Scholar

    [30]

    Simon M S, Sancho J M, Lindenberg K 2013 Phys. Rev. E 88 062105Google Scholar

    [31]

    包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第111页

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p111 (in Chinese)

    [32]

    Hu M, Bao J D 2018 Phys. Rev. E 97 062143Google Scholar

    [33]

    Bao J D, Liu J 2013 Phys. Rev. E 88 022153Google Scholar

    [34]

    Reimann P, Eichhorn R 2008 Phys. Rev. Lett. 101 180601Google Scholar

    [35]

    Nixon G I, Slater G W 1996 Phys. Rev. E 53 4969Google Scholar

    [36]

    Yeh D C, Huntington H B 1984 Phys. Rev. Lett. 53 1469Google Scholar

    [37]

    Coh S, Gannett W, Zettl A, Cohen M L, Louie S G 2013 Phys. Rev. Lett. 110 185901Google Scholar

    [38]

    Berkovich R, Garcia-Manes S, Urbakh M, Klafter J, Fernandez J M 2010 Biophys. J. 98 2692Google Scholar

    [39]

    Smith S B, Cui Y J, Bustamante C 1996 Science 271 795Google Scholar

    [40]

    Liphardt J, Onoa B, Smith S B, Tinoco Jr. I, Bustamante C 2001 Science 292 733Google Scholar

  • [1] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象. 物理学报, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [3] 王恩权, 陈浩, 杨毅, 隆正文, HassanabadiHassan. 洛伦兹对称破缺框架下的广义克莱因-戈尔登谐振子. 物理学报, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [4] 蒲瑾, 杨树政, 林恺. 洛伦兹破缺理论与Vaidya黑洞弯曲时空中的Dirac粒子隧穿辐射特征. 物理学报, 2019, 68(19): 190401. doi: 10.7498/aps.68.20190437
    [5] 杨树政, 林恺. 洛仑兹破缺标量场的霍金隧穿辐射. 物理学报, 2019, 68(6): 060401. doi: 10.7498/aps.68.20182050
    [6] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [7] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 物理学报, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [8] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散. 物理学报, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [9] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [10] 鲁公儒, 李 祥, 李培英. R-宇称破缺的相互作用研究. 物理学报, 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [11] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, 2007, 56(5): 2670-2677. doi: 10.7498/aps.56.2670
    [12] 董正超. d波超导体NIS结中的时间反演对称态的破缺与准粒子寿命效应. 物理学报, 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [13] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅲ)──replica对称破缺解. 物理学报, 1996, 45(1): 133-139. doi: 10.7498/aps.45.133
    [14] 余扬政, 陈熊熊. 二维超对称模型的超对称破缺和Witten指数. 物理学报, 1993, 42(2): 214-222. doi: 10.7498/aps.42.214
    [15] 孙宗琦. 振动弯结与点缺陷交互作用时间平均场的对称破缺及自组织现象. 物理学报, 1992, 41(12): 1987-1992. doi: 10.7498/aps.41.1987
    [16] 金亚秋. 随机粗糙面上后向散射的增强. 物理学报, 1989, 38(10): 1611-1620. doi: 10.7498/aps.38.1611
    [17] 夏蒙棼, 仇韵清. 单波驱动飞行粒子随机扩散. 物理学报, 1986, 35(1): 7-16. doi: 10.7498/aps.35.7
    [18] 夏蒙棼. 随机磁场中的反常扩散效应. 物理学报, 1981, 30(9): 1275-1278. doi: 10.7498/aps.30.1275
    [19] 侯伯宇. 各级微扰展开下自发破缺的规范无关性、么正性及可重整性. 物理学报, 1977, 26(4): 317-332. doi: 10.7498/aps.26.317
    [20] 赵保恒. 自发破缺规范理论中的光子-光子散射. 物理学报, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
计量
  • 文章访问数:  4036
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-06
  • 修回日期:  2021-05-19
  • 上网日期:  2021-09-16
  • 刊出日期:  2021-10-05

/

返回文章
返回