搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波退火和快速热退火下钛调制镍与锗锡反应

刘伟 平云霞 杨俊 薛忠营 魏星 武爱民 俞文杰 张波

引用本文:
Citation:

微波退火和快速热退火下钛调制镍与锗锡反应

刘伟, 平云霞, 杨俊, 薛忠营, 魏星, 武爱民, 俞文杰, 张波

Reaction of titanium-modulated nickel with germanium-tin under microwave and rapid thermal annealing

Liu Wei, Ping Yun-Xia, Yang Jun, Xue Zhong-Ying, Wei Xing, Wu Ai-Min, Yu Wen-Jie, Zhang Bo
PDF
HTML
导出引用
  • 本文研究了1 nm钛作为插入层的条件下, 镍与锗锡合金在不同退火温度下的固相反应, 比较了微波退火和快速热退火对镍锗锡化物形成的影响. 研究结果表明: 在微波退火300 ℃、快速热退火350 ℃条件下, 可以形成连续平整的镍锗锡薄膜. 通过进一步分析镍锗锡薄膜的元素分布, 发现1 nm钛插入层发生“层转移”现象, 钛在镍与锗锡合金反应后分布在样品的表面, 由“插入层”变为“盖帽层”; 而锡元素因受到金属钛的调制作用, 主要分布在镍锗锡薄膜/锗锡衬底的界面.
    As the complementary metal-oxide semiconductor (CMOS) compatible with group IV materials, germanium tin (GeSn) alloys have potential applications in photonics and microelectronics. With the increase of tin (Sn) content, GeSn alloys can change from indirect bandgap semiconductor to direct bandgap semiconductor. On the other hand, GeSn alloys have a higher hole mobility than Ge and can be used as channel materials in metal-oxide-semiconductor-field-effect transistors (MOSFETs). Therefore, the properties of GeSn alloys are studied extensively. In this work, the solid-phase reaction between Ni and GeSn is investigated under microwave annealing (MWA) and rapid thermal annealing (RTA) conditions. We use the four-point probe method to measure the sheet resistance, the atomic force microscopy (AFM) to examine the surface morphology of the sample, the cross-section transmission electron microscopy (XTEM) to analyze the microstructures of the metal stanogermanides, and energy dispersive X-ray spectrometer (EDX) to observe the elements’ distribution of different samples. It is shown that the flat Nickel stanogermanide (NiGeSn) films are obtained at 300 ℃ for MWA and at 350 ℃ for RTA. By analyzing the distributions of sample elements, we find that Sn atoms continue to diffuse into the NiGeSn layer and are segregate mainly at the interface between NiGeSn and GeSn. However, the Ti atoms move from interlayer to the surface after being annealed. We propose that this method is a promising way of developing GeSn devices in the future.
      通信作者: 平云霞, xyping@sues.edu.cn ; 张波, bozhang@mail.sim.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61604094)资助的课题
      Corresponding author: Ping Yun-Xia, xyping@sues.edu.cn ; Zhang Bo, bozhang@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61604094)
    [1]

    Wang P P 1978 IEEE Trans. Electron. Devices 25 779Google Scholar

    [2]

    Wang H J, Liu Y, Liu M S, Zhang Q F, Zhang C F, Ma X H, Zhang J C, Hao Y, Han G Q 2015 Superlattices Microstruct. 83 401Google Scholar

    [3]

    Liu Q, Cai J H, He J Z, Wang Y Z, Zhang D L, Liu C, Ren W, Yu W J, Liu X K, Zhao Q T 2017 J. Infrared Millimeter Waves 36 543Google Scholar

    [4]

    Zhang L, Wang Y S, Chen N L, Lin G Y, Li C, Huang W, Chen S Y, Xu J F, Wang J Y 2016 J. Non-Cryst. Solids 448 74Google Scholar

    [5]

    Onufrijevs P, Ščajev P, Medvids A, Andrulevicius M, Nargelas S, Malinauskas T, Stanionyte S, Skapas M, Grase L, Pludons A, Oehme M, Lyutovich K, Kasper E, Schulze J, Cheng H H 2020 Opt. Laser Technol. 128 106200Google Scholar

    [6]

    Han G Q, Su S J, Zhan C L, Zhou Q, Yang Y, Wang L X, Guo P F, Wong C P, Shen Z X, Cheng B W, Yeo Y C 2011 IEEE International Electron Devices Meeting Washington, DC Dec 05–07, 2011 p402

    [7]

    Wang L X, Su S J, Wang W, Gong X, Yang Y, Guo P F, Zhang G Z, Xue C L, Cheng B W, Han G Q, Yeo Y C 2013 Solid-State Electron. 83 66Google Scholar

    [8]

    Li H, Cheng H H, Lee L C, Lee C P, Su L H, Suen Y W 2014 Appl. Phys. Lett. 104 241904Google Scholar

    [9]

    Demeulemeester J, Schrauwen A, Nakatsuka O, Zaima S, Adachi M, Shimura Y, Comrie C M, Fleischmann C, Detavernier C, Temst K, Vantomme A 2011 Appl. Phys. Lett. 99 211905Google Scholar

    [10]

    Nishimura T, Nakatsuka O, Shimura Y, Takeuchi S, Vincent B, Vantomme A, Dekoster J, Caymax M, Loo R, Zaima S 2011 Solid-State Electron. 60 46Google Scholar

    [11]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 11Google Scholar

    [12]

    Wan W J, Ren W, Meng X R, Ping Y X, Wei X, Xue Z Y, Yu W J, Zhang M, Di Z F, Zhang B 2018 Chin. Phys. Lett. 35 056802Google Scholar

    [13]

    Khiangte K R, Rathore J S, Sharma V, Laha A, Mahapatra S 2018 Solid State Commun. 284–286 88Google Scholar

    [14]

    孟骁然, 平云霞, 常永伟, 魏星, 俞文杰, 薛忠营, 狄增峰, 张苗, 张波 2015 功能材料与器件学报 21 85

    Meng X R, Ping Y X, Chang Y W, Wei X, Yu W J, Xue Z Y, Di Z F, Zhang M, Zhang B 2015 J. Funct. Mater. Devices 21 85

    [15]

    Huang W Q, Cheng B W, Xue C L, Liu Z 2015 J. Appl. Phys. 118 165704Google Scholar

    [16]

    Lan H S, Chang S T, Liu C W 2017 Phys. Rev. B 95 201201Google Scholar

    [17]

    Wirths S, Geiger R, Driesch N V D, Mussler G, Stoica T, Mantl S, Lkonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [18]

    Yi S H, Shu K, Liao C, Hsu C W, Huang J Y 2018 IEEE Electron. Device Lett. 39 1278Google Scholar

    [19]

    Liu T H, Chiu P Y, Chuang Y, Liu C Y, Shen C H, Luo G L, Li J Y 2018 IEEE Electron. Device Lett. 39 468Google Scholar

    [20]

    Quintero A, Gergaud P, Hartmann J M, Delaye V, Bernier N, Cooper D, Saghi Z, Reboud V, Cassan E, Rodriguez P 2020 ECS Trans. 98 365

    [21]

    Zhang X, Zhang D L, Zheng J, Liu Z, He C, Xue C L, Zhang G Z, Li C B, Cheng B W, Wang Q M, 2015 Solid-State Electron. 114 178Google Scholar

    [22]

    Quintero A, Gergaud P, Hartmann J M, Reboud V, Cassan E, Rodriguez P 2020 Mater. Sci. Semicond. Process. 108 104890Google Scholar

    [23]

    Ping Y X, Hou C L, Zhang C M, Yu W J, Xue Z Y, Wei X, Peng W, Di Z F, Zhang M, Zhang B 2017 J. Alloys Compd. 693 527Google Scholar

    [24]

    Takeuchi S, Sakai A, Nakatsuka O, Ogawa M, Zaima S 2008 Thin Solid Films 517 159Google Scholar

    [25]

    胡成 2013 硕士学位论文 (上海: 复旦大学)

    Hu C 2013 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [26]

    周祥标, 许鹏, 付超超, 吴东平 2016 半导体技术 41 456Google Scholar

    Zhou X B, Xu P, Fu C C, Wu D P 2016 Semicond. Technol. 41 456Google Scholar

  • 图 1  Ni/Ti/GeSn的方块电阻随退火温度的变化

    Fig. 1.  Sheet resistance of Ni/Ti/GeSn samples annealed at various temperatures.

    图 2  Ni/Ti/GeSn样品不同退火方式、不同退火温度下的AFM测试图 (a)−(c) 微波退火150, 250, 350 ℃; (d)−(f) 快速热退火150, 250, 350 ℃

    Fig. 2.  AFM images of annealed Ni/Ti/GeSn samples: (a)−(c) MWA at 150, 250 and 350 ℃; (d)−(f) RTA at 150, 250 and 350 ℃.

    图 3  (a)−(c) 微波退火300 ℃条件下的XTEM图、EDX图和EDX映射图; (d)−(f) 快速退火350 ℃条件下的XTEM图、EDX图、EDX映射图

    Fig. 3.  (a)−(c) XTEM, EDX, and EDX mapping images of MWA at 300 ℃; (d)−(f) XTEM, EDX, and EDX mapping images of RTA at 350 ℃.

  • [1]

    Wang P P 1978 IEEE Trans. Electron. Devices 25 779Google Scholar

    [2]

    Wang H J, Liu Y, Liu M S, Zhang Q F, Zhang C F, Ma X H, Zhang J C, Hao Y, Han G Q 2015 Superlattices Microstruct. 83 401Google Scholar

    [3]

    Liu Q, Cai J H, He J Z, Wang Y Z, Zhang D L, Liu C, Ren W, Yu W J, Liu X K, Zhao Q T 2017 J. Infrared Millimeter Waves 36 543Google Scholar

    [4]

    Zhang L, Wang Y S, Chen N L, Lin G Y, Li C, Huang W, Chen S Y, Xu J F, Wang J Y 2016 J. Non-Cryst. Solids 448 74Google Scholar

    [5]

    Onufrijevs P, Ščajev P, Medvids A, Andrulevicius M, Nargelas S, Malinauskas T, Stanionyte S, Skapas M, Grase L, Pludons A, Oehme M, Lyutovich K, Kasper E, Schulze J, Cheng H H 2020 Opt. Laser Technol. 128 106200Google Scholar

    [6]

    Han G Q, Su S J, Zhan C L, Zhou Q, Yang Y, Wang L X, Guo P F, Wong C P, Shen Z X, Cheng B W, Yeo Y C 2011 IEEE International Electron Devices Meeting Washington, DC Dec 05–07, 2011 p402

    [7]

    Wang L X, Su S J, Wang W, Gong X, Yang Y, Guo P F, Zhang G Z, Xue C L, Cheng B W, Han G Q, Yeo Y C 2013 Solid-State Electron. 83 66Google Scholar

    [8]

    Li H, Cheng H H, Lee L C, Lee C P, Su L H, Suen Y W 2014 Appl. Phys. Lett. 104 241904Google Scholar

    [9]

    Demeulemeester J, Schrauwen A, Nakatsuka O, Zaima S, Adachi M, Shimura Y, Comrie C M, Fleischmann C, Detavernier C, Temst K, Vantomme A 2011 Appl. Phys. Lett. 99 211905Google Scholar

    [10]

    Nishimura T, Nakatsuka O, Shimura Y, Takeuchi S, Vincent B, Vantomme A, Dekoster J, Caymax M, Loo R, Zaima S 2011 Solid-State Electron. 60 46Google Scholar

    [11]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 11Google Scholar

    [12]

    Wan W J, Ren W, Meng X R, Ping Y X, Wei X, Xue Z Y, Yu W J, Zhang M, Di Z F, Zhang B 2018 Chin. Phys. Lett. 35 056802Google Scholar

    [13]

    Khiangte K R, Rathore J S, Sharma V, Laha A, Mahapatra S 2018 Solid State Commun. 284–286 88Google Scholar

    [14]

    孟骁然, 平云霞, 常永伟, 魏星, 俞文杰, 薛忠营, 狄增峰, 张苗, 张波 2015 功能材料与器件学报 21 85

    Meng X R, Ping Y X, Chang Y W, Wei X, Yu W J, Xue Z Y, Di Z F, Zhang M, Zhang B 2015 J. Funct. Mater. Devices 21 85

    [15]

    Huang W Q, Cheng B W, Xue C L, Liu Z 2015 J. Appl. Phys. 118 165704Google Scholar

    [16]

    Lan H S, Chang S T, Liu C W 2017 Phys. Rev. B 95 201201Google Scholar

    [17]

    Wirths S, Geiger R, Driesch N V D, Mussler G, Stoica T, Mantl S, Lkonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [18]

    Yi S H, Shu K, Liao C, Hsu C W, Huang J Y 2018 IEEE Electron. Device Lett. 39 1278Google Scholar

    [19]

    Liu T H, Chiu P Y, Chuang Y, Liu C Y, Shen C H, Luo G L, Li J Y 2018 IEEE Electron. Device Lett. 39 468Google Scholar

    [20]

    Quintero A, Gergaud P, Hartmann J M, Delaye V, Bernier N, Cooper D, Saghi Z, Reboud V, Cassan E, Rodriguez P 2020 ECS Trans. 98 365

    [21]

    Zhang X, Zhang D L, Zheng J, Liu Z, He C, Xue C L, Zhang G Z, Li C B, Cheng B W, Wang Q M, 2015 Solid-State Electron. 114 178Google Scholar

    [22]

    Quintero A, Gergaud P, Hartmann J M, Reboud V, Cassan E, Rodriguez P 2020 Mater. Sci. Semicond. Process. 108 104890Google Scholar

    [23]

    Ping Y X, Hou C L, Zhang C M, Yu W J, Xue Z Y, Wei X, Peng W, Di Z F, Zhang M, Zhang B 2017 J. Alloys Compd. 693 527Google Scholar

    [24]

    Takeuchi S, Sakai A, Nakatsuka O, Ogawa M, Zaima S 2008 Thin Solid Films 517 159Google Scholar

    [25]

    胡成 2013 硕士学位论文 (上海: 复旦大学)

    Hu C 2013 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [26]

    周祥标, 许鹏, 付超超, 吴东平 2016 半导体技术 41 456Google Scholar

    Zhou X B, Xu P, Fu C C, Wu D P 2016 Semicond. Technol. 41 456Google Scholar

  • [1] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [2] 何天立, 魏鸿源, 李成明, 李庚伟. n型GaN过渡族难熔金属欧姆电极对比. 物理学报, 2019, 68(20): 206101. doi: 10.7498/aps.68.20190717
    [3] 赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣. 单靶溅射制备铜锌锡硫薄膜及原位退火研究. 物理学报, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [4] 平云霞, 王曼乐, 孟骁然, 侯春雷, 俞文杰, 薛忠营, 魏星, 张苗, 狄增峰, 张波. 700℃退火下铝调制镍硅锗薄膜的外延生长机理. 物理学报, 2016, 65(3): 036801. doi: 10.7498/aps.65.036801
    [5] 黄立静, 任乃飞, 李保家, 周明. 激光辐照对热退火金属/掺氟二氧化锡透明导电薄膜光电性能的影响. 物理学报, 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [6] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [7] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金. 物理学报, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [8] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [9] 张磊, 叶辉, 皇甫幼睿, 刘旭. 氧化硅缓冲层对于退火形成锗量子点的作用研究. 物理学报, 2011, 60(7): 076103. doi: 10.7498/aps.60.076103
    [10] 黄玥, 苟鸿雁, 廖忠伟, 孙清清, 张卫, 丁士进. 基于Al2O3/Pt纳米晶/HfO2叠层的MOS电容存储效应研究. 物理学报, 2010, 59(3): 2057-2063. doi: 10.7498/aps.59.2057
    [11] 单晓楠, 黄 如, 李 炎, 蔡一茂. NiSi金属栅电学特性的热稳定性研究. 物理学报, 2007, 56(8): 4943-4949. doi: 10.7498/aps.56.4943
    [12] 郝秋艳, 刘彩池, 孙卫忠, 张建强, 孙世龙, 赵丽伟, 张建峰, 周旗钢, 王 敬. 高温快速退火对重掺锑硅单晶中流动图形缺陷的影响. 物理学报, 2005, 54(10): 4863-4866. doi: 10.7498/aps.54.4863
    [13] 黄 伟, 张利春, 高玉芝, 金海岩. 掺Mo对NiSi薄膜热稳定性的改善. 物理学报, 2005, 54(5): 2252-2255. doi: 10.7498/aps.54.2252
    [14] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响. 物理学报, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [15] 李印峰, 陈笃行, 沈保根, M.VAZQUEZ, A.HERNANDO. 非晶态铁基合金退火样品的偏移回线. 物理学报, 2001, 50(5): 953-957. doi: 10.7498/aps.50.953
    [16] 徐遵图, 徐俊英, 杨国文, 张敬明, 殷 涛, 赵红东, 廉 鹏, 沈光地. 快速热退火引起GaAs/AlGaAs双量子阱中铝原子的扩散研究. 物理学报, 1998, 47(6): 945-951. doi: 10.7498/aps.47.945
    [17] 刘家璐, 张廷庆, 冯建华, 周冠山, 应明炯. B+注入HgCdTe快速热退火的研究. 物理学报, 1998, 47(1): 47-52. doi: 10.7498/aps.47.47
    [18] 袁健, 陆昉, 孙恒慧, 卫星, 杨敏, 黄大鸣, 徐宏来, 沈鸿烈, 邹世昌. 快速退火后重掺硼的分子束外延层的电学特性. 物理学报, 1994, 43(7): 1137-1143. doi: 10.7498/aps.43.1137
    [19] 陈存礼, 李建年, 华文玉. 钛-硅系快速热退火固相反应机制的研究. 物理学报, 1990, 39(7): 127-133. doi: 10.7498/aps.39.127
    [20] 郑建宣, 张文英, 刘起宏, 刘敬旗. 铜-锗-锡三元系合金相图. 物理学报, 1966, 22(4): 423-428. doi: 10.7498/aps.22.423
计量
  • 文章访问数:  6159
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-01-07
  • 上网日期:  2021-05-26
  • 刊出日期:  2021-06-05

/

返回文章
返回