搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能

白刚 林翠 刘端生 许杰 李卫 高存法

引用本文:
Citation:

取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能

白刚, 林翠, 刘端生, 许杰, 李卫, 高存法

Phase diagram and dielectric properties of orientation-dependent PbZr0.52Ti0.48O3 epitaxial films

Bai Gang, Lin Cui, Liu Duan-Sheng, Xu Jie, Li Wei, Gao Cun-Fa
PDF
HTML
导出引用
  • 探索相变和构建相图对于铁电物理和材料研究至关重要, 是相关理论和实验领域的研究焦点. 随着计算机和人工智能的迅猛发展, 利用机器学习方法并结合其他计算方法如第一性原理, 可以从海量的材料数据中选择符合目标的材料种类, 从而大大节约了实验成本. 本文利用神经网络方法和唯象理论计算准确预测出不同取向铁电薄膜的相图中可能出现的相, 进而建立了(001), (110)和(111)取向Pb(Zr0.52Ti0.48)O3铁电薄膜的温度-应变相图, 并计算了室温下不同取向的极化和介电性能. 通过预测准确率及损失随迭代次数的变化, 发现深度神经网络方法在薄膜温度-应变相图构建及预测相的种类方面具有准确快速等优势. 通过对室温极化与介电性能进行分析, 发现(111)取向的Pb(Zr0.52Ti0.48)O3薄膜面外极化最大, 面外介电系数最小, 且二者对应变变化都不敏感. 这对设计需要介电系数和极化性能处于稳定工作环境及对运行有特殊要求的微纳器件具有十分重要的理论指导意义.
    Exploring phase transition behaviors and constructing phase diagrams are of importance for theoretically and experimentally studying ferroelectric physics and materials. Because of the rapid development of computers and artificial intelligence, especially machine learning methods combined with other computational methods such as first principle calculation, it is possible to predict and choose appropriate materials that meet the target requirements from a large number of material data, which greatly saves the cost of experiments. In this work, we use neural network method and phenomenological theoretical calculations to accurately predict the phase structures that may appear in the phase diagrams of different orientated Pb(Zr0.52Ti0.48)O3 ferroelectric films, and establish the temperature-strain phase diagrams of (001), (110) and (111) oriented thin film, and calculate the polarization and dielectric properties of different oriented films at room temperature. By analyzing the changes of prediction accuracy and loss with the number of iterations, it is found that the deep neural network method has the advantages of high accuracy and speed in the construction of the film temperature-strain phase diagram and the prediction of the types of phases. Through the analysis of the room temperature polarization and dielectric properties, it is found that the (111)-oriented PbZr0.52Ti0.48O3 film has the largest out-of-plane polarization and the smallest out-of-plane dielectric coefficient, and they are insensitive to misfit strain. This work provides guidelines for designing micro-nano devices that require the stable dielectric coefficient and polarization performance in the special working environment and operation.
      通信作者: 白刚, baigang@njupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51602159, 61804080)资助的课题
      Corresponding author: Bai Gang, baigang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602159, 61804080)
    [1]

    Scott J 2007 Science 315 954Google Scholar

    [2]

    Dawber M, Rabe K, Scott J 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [3]

    Schlom D, Chen L, Eom C, Rabe K, Streiffer S, Triscone J 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [4]

    Agar J, Pandya S, Xu R, Yadav A, Liu Z, Angsten T, Saremi S, Asta M, Ramesh R, Martin L 2016 MRS Commun. 6 151Google Scholar

    [5]

    Martin L, Chu Y, Ramesh R 2010 Mater. Sci. Eng. 68 89Google Scholar

    [6]

    Schlom D, Chen L, Pan X, Schmehl A, Zurbuchen M 2008 J. Am. Ceram. Soc. 91 2429Google Scholar

    [7]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [8]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B, Tagantsev A, Pan X, Streiffer S, Chen L, Kirchoefer S, Levy J, Schlom D 2004 Nature (London) 430 758Google Scholar

    [9]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [10]

    Xu R, Liu S, Grinberg I, Karthik J, Damodaran A, Rappe A, Martin L 2015 Nat. Mater. 14 79Google Scholar

    [11]

    Simon W, Akdogan E, Safari A 2005 J. Appl. Phys. 97 103530Google Scholar

    [12]

    Simon W, Akdogan E, Safari A, Bellotti J 2005 Appl. Phys. Lett. 87 082906Google Scholar

    [13]

    Simon W, Akdogan E, Safari A, Bellotti J 2006 Appl. Phys. Lett. 88 132902Google Scholar

    [14]

    Gui Z, Prosandeev S, Bellaiche L 2011 Phys. Rev. B 84 214112Google Scholar

    [15]

    Raeliarijaona A, Fu H 2014 J. Appl. Phys. 115 054105Google Scholar

    [16]

    Oja R, Johnston K, Frantti J, Nieminen R 2008 Phys. Rev. B 78 094102Google Scholar

    [17]

    Angsten T, Martin L, Asta M 2017 Phys. Rev. B 95 174110Google Scholar

    [18]

    Tagantsev A K, Pertsev N A, Muralt P, Setter N 2002 Phys. Rev. B 65 012104Google Scholar

    [19]

    Akcay G, Misirlioglu I B, Alpay S P 2006 Appl. Phys. Lett. 89 042903Google Scholar

    [20]

    Zhang J X, Li Y L, Wang Y, Lliu Z K, Chen L Q, Chu Y H, Zavaliche F, Ramesh R 2007 J. Appl. Lett. 101 114105Google Scholar

    [21]

    Wu H, Ma X, Zhang Z, Zeng J, Wang J, Chai G 2016 AIP Adv. 6 015309Google Scholar

    [22]

    Mtebwa M, Tagantsev A K, Yamada T, Gemeiner P, Dkhil B, Setter N 2016 Phys. Rev. B 93 144113Google Scholar

    [23]

    Wang F, Ma W 2019 J. Appl. Lett. 125 082528Google Scholar

    [24]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 246 5Google Scholar

    [25]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 236 1Google Scholar

    [26]

    Li L, Yang Y, Zhang D, Ye Z, Jesse S, Kalinin S, Vasudevan R 2018 Sci. Adv. 4 eaap8672Google Scholar

    [27]

    Yuan R, Tian Y, Xue D, Xue D, Zhou Y, Ding X, Sun J, Lookman T 2019 Adv. Sci. 6 1901395Google Scholar

    [28]

    Pertsev N, Zembilgotov A, Tagantsev A 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [29]

    Liu Y and Li J 2011 Phys. Rev. B 84 132104Google Scholar

    [30]

    Chen L 2007 Landau Free-Energy Coefficients, Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer-Verlag)

    [31]

    Liu D, Bai G, Gao C 2020 J. Appl. Lett. 127 154101Google Scholar

    [32]

    Hornik K, Stinchcombe M, White H 1989 Neural. Netw. 2 359Google Scholar

    [33]

    Zhu Z, Li J, Lai F, Zhen Y, Lin Y, Nan C, Li L 2007 Appl. Phys. Lett. 91 222910Google Scholar

    [34]

    Peng B, Zhang Q, Bai G, Leighton G, Shaw C, Milne S, Zou B, Sun W, Huang H, Wang Z 2019 Energy Environ. Sci. 12 1708Google Scholar

    [35]

    Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q, Chen L 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

  • 图 1  (a) 定向构造的训练集示例; (b) DNNs预测准确率及损失随迭代次数的变化; (c) DNNs预测的(110)取向的PZT52/48相图

    Fig. 1.  (a) Constructed training set example; (b) the accuracy and loss of DNNs as a function of the number of iterations; (c) the temperature-misfit strain phase diagram of (110) oriented PZT52/48 thin film obtained by DNNs classification.

    图 2  (a), (c), (e)分别为(001), (110), (111)取向薄膜可能存在相的结构示意图; (b), (d), (f)分别为(001), (110), (111)取向PZT52/48薄膜的相图, 其中粗线表示一级相变, 细线表示二级相变

    Fig. 2.  Schematic diagrams of phase structures for (001) (a), (110) (c) and (111) (e) oriented ferroelectric PZT52/48 films; temperature-strain phase diagrams of (001) (b), (110) (d) and (111) (f) oriented PZT52/48 films. Thick and thin lines denote the first order and second order transitions, respectively.

    图 3  (a) (001), (b) (110)和(c) (111)取向PZT54/48薄膜的室温极化随应变的变化

    Fig. 3.  Strain dependent polarization of (a) (001), (b) (110), (c) (111) oriented PZT52/48 films at room temperature

    图 4  在室温下, (a) (001), (b) (110)和(c) (111)取向PZT52/48薄膜的介电系数随应变的变化

    Fig. 4.  Strain dependent dielectric coefficients of (a) (001), (b) (110) and (c) (111) oriented PZT52/48 films at room temperature.

    表 1  不同取向PZT52/48薄膜相图中出现的相的极化分量的特征

    Table 1.  Polarization components of the different phases occurring in strain-temperature phase diagrams of (001), (110), and (111) oriented PZT52/48 films.

    相结构全局坐标晶体坐标
    (001)顺电p${P_1} = {P_2} = {P_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    四方T${P_1} = {P_2} = 0, {P_3} \ne 0$${P_1} = {P_2} = 0, {P_3} \ne 0$
    单斜M${P_1} = {P_2} \ne 0, {P_3} \ne 0$${P_1} = {P_2} \ne 0, {P_3} \ne 0$
    正交O${P_1} = {P_2} \ne 0, {P_3} = 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
    (110)顺电p${P'_1} = {P'_2} = {P'_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    正交O${P'_1} = {P'_2} = 0, {P'_3}\ne 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
    单斜MB${P'_1} < {P'_{\rm{3} } } {\rm{/} }\sqrt {\rm{2} }, {P'_{\rm{2} } } = 0$${P_1} = {P_2} > {P_3}$
    单斜MA${P'_1} > {P'_{\rm{2} } } {\rm{/} }\sqrt {\rm{2} }, {P'_3} = 0$${P_1} = {P_2} < {P_3}$
    四方T${P'_1} \ne {\rm{0 } },{P'_{\rm{2} } } = 0, {P'_3} = 0$$ {P}_{1}{} = {P}_{2}=0, {P}_{3}\ne \rm{0}$
    (111)顺电p${P''_1}= {P''_2} = {P''_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    三方R${P''_1} = {P''_2} = 0, \;{P''_3} \ne 0$${P_1} = {P_2} = {P_3} \ne 0$
    单斜MB${P''_1} = 0, {P''_2} \ne 0, {P''_3} \ne 0$${P_1} = {P_2} > {P_3} \ne {\rm{0}}$
    下载: 导出CSV
  • [1]

    Scott J 2007 Science 315 954Google Scholar

    [2]

    Dawber M, Rabe K, Scott J 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [3]

    Schlom D, Chen L, Eom C, Rabe K, Streiffer S, Triscone J 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [4]

    Agar J, Pandya S, Xu R, Yadav A, Liu Z, Angsten T, Saremi S, Asta M, Ramesh R, Martin L 2016 MRS Commun. 6 151Google Scholar

    [5]

    Martin L, Chu Y, Ramesh R 2010 Mater. Sci. Eng. 68 89Google Scholar

    [6]

    Schlom D, Chen L, Pan X, Schmehl A, Zurbuchen M 2008 J. Am. Ceram. Soc. 91 2429Google Scholar

    [7]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [8]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B, Tagantsev A, Pan X, Streiffer S, Chen L, Kirchoefer S, Levy J, Schlom D 2004 Nature (London) 430 758Google Scholar

    [9]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [10]

    Xu R, Liu S, Grinberg I, Karthik J, Damodaran A, Rappe A, Martin L 2015 Nat. Mater. 14 79Google Scholar

    [11]

    Simon W, Akdogan E, Safari A 2005 J. Appl. Phys. 97 103530Google Scholar

    [12]

    Simon W, Akdogan E, Safari A, Bellotti J 2005 Appl. Phys. Lett. 87 082906Google Scholar

    [13]

    Simon W, Akdogan E, Safari A, Bellotti J 2006 Appl. Phys. Lett. 88 132902Google Scholar

    [14]

    Gui Z, Prosandeev S, Bellaiche L 2011 Phys. Rev. B 84 214112Google Scholar

    [15]

    Raeliarijaona A, Fu H 2014 J. Appl. Phys. 115 054105Google Scholar

    [16]

    Oja R, Johnston K, Frantti J, Nieminen R 2008 Phys. Rev. B 78 094102Google Scholar

    [17]

    Angsten T, Martin L, Asta M 2017 Phys. Rev. B 95 174110Google Scholar

    [18]

    Tagantsev A K, Pertsev N A, Muralt P, Setter N 2002 Phys. Rev. B 65 012104Google Scholar

    [19]

    Akcay G, Misirlioglu I B, Alpay S P 2006 Appl. Phys. Lett. 89 042903Google Scholar

    [20]

    Zhang J X, Li Y L, Wang Y, Lliu Z K, Chen L Q, Chu Y H, Zavaliche F, Ramesh R 2007 J. Appl. Lett. 101 114105Google Scholar

    [21]

    Wu H, Ma X, Zhang Z, Zeng J, Wang J, Chai G 2016 AIP Adv. 6 015309Google Scholar

    [22]

    Mtebwa M, Tagantsev A K, Yamada T, Gemeiner P, Dkhil B, Setter N 2016 Phys. Rev. B 93 144113Google Scholar

    [23]

    Wang F, Ma W 2019 J. Appl. Lett. 125 082528Google Scholar

    [24]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 246 5Google Scholar

    [25]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 236 1Google Scholar

    [26]

    Li L, Yang Y, Zhang D, Ye Z, Jesse S, Kalinin S, Vasudevan R 2018 Sci. Adv. 4 eaap8672Google Scholar

    [27]

    Yuan R, Tian Y, Xue D, Xue D, Zhou Y, Ding X, Sun J, Lookman T 2019 Adv. Sci. 6 1901395Google Scholar

    [28]

    Pertsev N, Zembilgotov A, Tagantsev A 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [29]

    Liu Y and Li J 2011 Phys. Rev. B 84 132104Google Scholar

    [30]

    Chen L 2007 Landau Free-Energy Coefficients, Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer-Verlag)

    [31]

    Liu D, Bai G, Gao C 2020 J. Appl. Lett. 127 154101Google Scholar

    [32]

    Hornik K, Stinchcombe M, White H 1989 Neural. Netw. 2 359Google Scholar

    [33]

    Zhu Z, Li J, Lai F, Zhen Y, Lin Y, Nan C, Li L 2007 Appl. Phys. Lett. 91 222910Google Scholar

    [34]

    Peng B, Zhang Q, Bai G, Leighton G, Shaw C, Milne S, Zou B, Sun W, Huang H, Wang Z 2019 Energy Environ. Sci. 12 1708Google Scholar

    [35]

    Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q, Chen L 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [3] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [4] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [5] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [6] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [7] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [8] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [9] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [10] 蒋永林, 何长春, 杨小宝. ScxY1–x Fe2合金固溶和V2x Fe2(1–x)Zr有序-无序转变的理论预测. 物理学报, 2021, 70(21): 213601. doi: 10.7498/aps.70.20210998
    [11] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [13] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [14] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [15] 张龙, 翁征宇. Hubbard模型中的相位弦效应与交互Chern-Simons理论. 物理学报, 2015, 64(21): 217101. doi: 10.7498/aps.64.217101
    [16] 王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞. 应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究. 物理学报, 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [17] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [18] 卢兆信. 参数修改对铁电薄膜相变性质的影响. 物理学报, 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [19] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [20] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁. 物理学报, 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
计量
  • 文章访问数:  4633
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 修回日期:  2021-01-25
  • 上网日期:  2021-06-10
  • 刊出日期:  2021-06-20

/

返回文章
返回