搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅醚/石墨醚异质结构光电性质的理论研究

张颖 刘春生

引用本文:
Citation:

硅醚/石墨醚异质结构光电性质的理论研究

张颖, 刘春生

Theoretical study of optical and electronic properties of silicether/graphether heterostructure

Zhang Ying, Liu Chun-Sheng
PDF
HTML
导出引用
  • 继石墨烯被发现合成之后, 二维石墨醚及硅醚材料被预测为新型半导体. 基于密度泛函理论的第一性原理计算, 对硅醚/石墨醚异质结构的电子和光学性质进行了系统的研究. 结果表明: 当层间距为2.21 Å时, 石墨醚的凹氧原子位于硅醚的凹氧原子之上的堆砌方式是最稳定的. 此外, 它的间接带隙为0.63 eV, 小于石墨醚和硅醚的带隙. 通过调节应变和电场强度, 可以调整硅醚/石墨醚异质结构的带隙. 特别是在压缩应变下, 异质结构存在间接带隙向直接带隙的转变. 硅醚/石墨醚异质结构的吸收系数在紫外光区出现强峰, 与单层石墨醚和硅醚相比, 异质结构的光吸收能力在80—170 nm范围内明显增强, 结果表明硅醚/石墨醚异质结构具有突出的紫外吸收能力. 本工作可为纳米器件提供一种具有潜在应用前景的新型材料.
    Since the discovery and synthesis of graphene, two-dimensional graphether and silicether materials have been predicted as novel semiconductors. A novel two-dimensional silicether/graphether heterostructure is designed by combining silicether and graphether, which has unique optical and electronic properties due to the properties of a single material synthesized by heterostructures. The electronic and optical properties of silicether/graphether heterostructure are studied by the first-principles calculations based on density functional theory. The binding energy and layer spacing for each of all considered 16 stacking patterns of the heterostructures are calculated. The results show that different stacking patterns have a small effect on the binding energy of the heterostructure. When the layer spacing is 2.21 Å, the stacking pattern in which the concave oxygen atoms of graphether are on the top of the concave oxygen atoms of silicether is the most stable. In addition, it has an indirect band gap of 0.63 eV, which is smaller than that of the silicether and graphether, respectively. By changing the external electric field and the biaxial strain strength, the band gap of the silicether/graphether heterostructure shows tunability. The compressive strain can increase the band gap of silicether/graphether heterostructure, while the band gap decreases with the tensile strain increasing. Especially, when the compressive strain is greater than –6%, the heterostructure undergoes an indirect-to-direct band gap transition, which is beneficial to its applications in optical devices. When the external electric field is applied, the band gap of the heterostructure changes linearly with the strength of the electric field, and the indirect band gap characteristic is maintained. The absorption coefficient of silicether/graphether heterostructure shows a strong peak in the ultraviolet light region. The maximum absorption coefficient can reach up to 1.7 × 105 cm–1 around 110 nm. Compared with that of monolayer graphether and silicether, the optical absorption of the heterostructure is significantly enhanced within the range from more than 80 nm to less than 170 nm. The results show that silicether/graphether heterostructure has an outstanding optical absorption in the ultraviolet region. Moreover, the silicether/graphether heterostructure also shows considerable absorption coefficient (1 × 104—4 × 104 cm–1) in the visible region, which makes it a potential material in photovoltaic applications. This work may provide a novel material with a promising prospect of potential applications in nanodevices.
      通信作者: 刘春生, csliu@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974068, 11704198)资助的课题
      Corresponding author: Liu Chun-Sheng, csliu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974068, 11704198)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Butler S Z, Hollen S M, Cao L 2013 ACS Nano 7 2898Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS nano 8 4033Google Scholar

    [6]

    Cui H, Zheng K, Zhang Y, Ye H, Chen X 2018 IEEE Electron Device Lett. 39 284Google Scholar

    [7]

    Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W 2014 Nature 516 78Google Scholar

    [8]

    Xia Y, Mathis T S, Zhao M Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S 2018 Nature 557 409Google Scholar

    [9]

    Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J W 2019 Adv. Mater. 30 1704561

    [10]

    Li M, Han M K, Zhou J, Deng Q H, Zhou X B, Xue J M, Du S Y, Yin X W, Huang Q 2018 Adv. Electron. Mater. 4 1700617Google Scholar

    [11]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [12]

    Cai Y C, Shen J, Ge G, Zhang Y Z, Jin W Q, Huang W, Shao J J, Yang J, Dong X C 2018 ACS Nano 12 56Google Scholar

    [13]

    Chen Z P, Xu C, Ma C Q, Ren W C, Cheng H M 2013 Adv. Mater. 25 1296Google Scholar

    [14]

    Wang G Z, Gao Z, Wang G P, Liu S W, Yang P, Qing Y 2014 Nano Res. 7 704Google Scholar

    [15]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y, 2016 Science 353 1137Google Scholar

    [16]

    Han M K, Yin X W, Wu H, Hou Z X, Song C Q, Li X L, Zhang L T, Cheng L F 2016 ACS Appl. Mater. Interfaces 8 21011Google Scholar

    [17]

    Ning M Q, Lu M M, Li J B, Chen Z, Dou Y K, Wang C Z, Rehman F, Cao M S, Jin H B 2015 Nanoscale 7 15734Google Scholar

    [18]

    Qing Y C, Nan H Y, Luo F, Zhou W C 2017 RSC Adv. 7 27755Google Scholar

    [19]

    Wu F, Xie A, Sun M X, Jiang W C, Zhang K 2017 Mater. Lett. 193 30Google Scholar

    [20]

    Lü H L, Zhang H Q, Ji G B 2016 Part. Part. Syst. Char. 33 656Google Scholar

    [21]

    Lan X L, Liang C Y, Wu M S, Wu N, He L A, Li Y B, Wang Z J 2018 J. Mater. Chem. C 122 18537Google Scholar

    [22]

    He D L, Wang Y, Song S L, Liu S, Deng Y 2017 ACS Appl. Mater. Interfaces 9 44839Google Scholar

    [23]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar

    [24]

    Wang Z, Ki D, Chen H, Berger H, Macdonald A H, Morpurgo A F 2015 Nat. Commun. 6 8339Google Scholar

    [25]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M 2015 Nat. Mater. 14 421Google Scholar

    [26]

    Wang Y, Ding Y 2015 Phys. Chem. Chem. Phys. 17 27769Google Scholar

    [27]

    Xia C, Xue B, Wang T, Peng Y, Jia Y 2015 Appl. Phys. Lett. 107 193107Google Scholar

    [28]

    Chen X P, Sun X, Yang D G, Meng R S, Tan C J, Yang Q, Liang Q H, Jiang J K 2016 J. Mater. Chem. C 4 10082Google Scholar

    [29]

    Ares P, Aguilargalindo F, Rodríguezsanmiguel D, Aldave D A, Díaztendero S, Alcamí M, Martín F, Gómezherrero J, Zamora F 2016 Adv. Mater. 30 6515Google Scholar

    [30]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S 2016 Nat. Commun. 7 13352Google Scholar

    [31]

    Davletshin A R, Ustiuzhanina S V, Kistanov A A, Saadatmand D, Dmitriev S V, Zhou K 2018 Physica B 534 63Google Scholar

    [32]

    Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C 2016 J. Mater. Chem. C 4 5434Google Scholar

    [33]

    Wei W, Dai Y, Niu C, Li X, Ma Y, Huang B 2015 J. Mater. Chem. C 3 11548Google Scholar

    [34]

    Li X, Chen W, Zhang S, Wang P, Zhong H, Lin S 2015 Nano Energy 16 310Google Scholar

    [35]

    Cai Y, Pei Q X, Zhang G, Zhang Y W 2016 J. Appl. Phys. 119 065102Google Scholar

    [36]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C. 5 9687Google Scholar

    [37]

    Cao H, Zhou Z, Zhou X, Cao J 2017 Comput. Mater. Sci. 139 179Google Scholar

    [38]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [39]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [40]

    Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P L, Constantinescu G C, Kandyba V, Barinov A 2017 Sci. Adv. 3 e16018324Google Scholar

    [41]

    Xie Z F, Sun F W, Yao R, Zhang Y, Zhang Y H, Zhang Z H, Fan J B, Ni L, Duan L 2019 Appl. Surf. Sci. 475 839Google Scholar

    [42]

    Wang L, Zhou X, Ma T, Liu D M, Gao L, Li X, Zhang J, Hu Y Z, Wang H, Dai Y D, Luo J 2017 Nanoscale 9 10846Google Scholar

    [43]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [44]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [45]

    Rajagopal A K, Callaway J 1973 Phy. Rev. B 7 1912Google Scholar

    [46]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [47]

    Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [48]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [49]

    Zhu J, Schwingenschlőgl U 2014 ACS Appl. Mater. Interfaces 6 11675Google Scholar

    [50]

    Jappor H R, Saleh Z A, Abdulsattar M A 2012 Adv. Mater. Sci. Eng. 2012 180679Google Scholar

    [51]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [52]

    Wang C, Xia Q, Nie Y, Rahman M, Guo G 2016 AIP Adv. 6 035204Google Scholar

    [53]

    Li X H, Wang B J, Cai X L, Zhang L W, Wang G D, Ke S H 2017 RSC Adv. 7 28393Google Scholar

    [54]

    Kou L 2012 J. Phys. Chem. Lett. 3 2934Google Scholar

    [55]

    Xiong A, Zhou X 2019 Mater. Res. Express 6 075907Google Scholar

    [56]

    Ke C, Wu Y, Zhou J, Wu Z, Zhang C, Li X, Kang J 2019 J. Phys. D 52 115101Google Scholar

    [57]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437Google Scholar

    [58]

    Houssa M, van den Broek B, Scalise E, Pourtois G, Afanas' Ev V, Stesmans A 2013 Phys. Chem. Chem. Phys. 15 3702Google Scholar

    [59]

    Liu Q, Li L, Li Y, Gao Z, Chen Z, Lu J 2012 J. Phys. Chem. C 116 21556Google Scholar

    [60]

    Li W, Wang T, Dai X, Ma Y, Tang Y 2017 J. Alloys Compd. 705 486Google Scholar

    [61]

    Leroux M, Grandjean N, Laügt M, Massies J, Gil B, Lefebvre P, Bigenwald P 1998 Phys. Rev. B 58 13371Google Scholar

    [62]

    Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Yun H N, Zhu Z, Amal R 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [63]

    Hu W, Li Z, Yang J 2013 J. Chem. Phys. 138 054701Google Scholar

    [64]

    Chen X, Jiang J, Liang Q, Meng R, Tan C, Yang Q, Zhang S, Zeng H 2016 J. Mater. Chem. C 4 7406

    [65]

    Sun M, Chou J P, Gao J, Cheng Y, Hu A, Tang W, Zhang G 2018 ACS Omega 3 8514Google Scholar

  • 图 1  16种堆砌方式在不同层间距下的结合能

    Fig. 1.  Binding energy of the sixteen stacking patterns under different interlayer distances.

    图 2  (a) 异质结构堆砌方式X的俯视图; (b) 堆砌方式X的侧视图; 红色、黄色和灰色的球分别代表氧原子、硅原子和碳原子

    Fig. 2.  (a) Top view of stacking pattern X; (b) side view of the pattern X. O, Si and C atoms are presented by red, yellow and grey balls, respectively.

    图 3  能带结构图 (a)石墨醚; (b)硅醚; (c)硅醚/石墨醚异质结构, 其中点A, BC分别为态A, B和C在能带结构中的位置

    Fig. 3.  Band structure: (a) Graphether; (b) silicether; (c) silicether/graphether heterostrure. Points A, B and C in panel (c) are the positions of states A, B and C in the energy band structure respectively.

    图 4  硅醚/石墨醚异质结构的TDOS (a)和PDOS (b), (c)

    Fig. 4.  Total density (a) and partial density (b), (c) of the state of the graphether/silicether heterostructure.

    图 5  (a) 双轴应变下硅醚/石墨醚异质结构的带隙变化; (b) 双轴应变下态B和态C的能量; 应变为-6%时异质结构中(c)硅醚和(d)石墨醚的PDOS图; (e) 不同垂直电场强度下带隙变化

    Fig. 5.  (a) Band gap variation of graphether/silicether heterostructure under biaxial strain; (b) energy of states B and C under biaxial strain; the partial density of the state of (c) silicether and (d) graphether in the heterostructure at -6% strain; (e) the band gap variation of silicether/graphether heterostructure under perpendicular electric field.

    图 6  双轴应变下的能带结构图

    Fig. 6.  Band structure of silicether/graphether heterostructure under biaxial strain.

    图 7  不同垂直电场强度下的能带结构图

    Fig. 7.  Band structure of silicether/graphether heterostructure under perpendicular electric field.

    图 8  石墨醚、硅醚和硅醚/石墨醚异质结构的光吸收效率

    Fig. 8.  Optical absorption of silicether, graphether and silicether/graphether heterostructure.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Butler S Z, Hollen S M, Cao L 2013 ACS Nano 7 2898Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS nano 8 4033Google Scholar

    [6]

    Cui H, Zheng K, Zhang Y, Ye H, Chen X 2018 IEEE Electron Device Lett. 39 284Google Scholar

    [7]

    Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W 2014 Nature 516 78Google Scholar

    [8]

    Xia Y, Mathis T S, Zhao M Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S 2018 Nature 557 409Google Scholar

    [9]

    Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J W 2019 Adv. Mater. 30 1704561

    [10]

    Li M, Han M K, Zhou J, Deng Q H, Zhou X B, Xue J M, Du S Y, Yin X W, Huang Q 2018 Adv. Electron. Mater. 4 1700617Google Scholar

    [11]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [12]

    Cai Y C, Shen J, Ge G, Zhang Y Z, Jin W Q, Huang W, Shao J J, Yang J, Dong X C 2018 ACS Nano 12 56Google Scholar

    [13]

    Chen Z P, Xu C, Ma C Q, Ren W C, Cheng H M 2013 Adv. Mater. 25 1296Google Scholar

    [14]

    Wang G Z, Gao Z, Wang G P, Liu S W, Yang P, Qing Y 2014 Nano Res. 7 704Google Scholar

    [15]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y, 2016 Science 353 1137Google Scholar

    [16]

    Han M K, Yin X W, Wu H, Hou Z X, Song C Q, Li X L, Zhang L T, Cheng L F 2016 ACS Appl. Mater. Interfaces 8 21011Google Scholar

    [17]

    Ning M Q, Lu M M, Li J B, Chen Z, Dou Y K, Wang C Z, Rehman F, Cao M S, Jin H B 2015 Nanoscale 7 15734Google Scholar

    [18]

    Qing Y C, Nan H Y, Luo F, Zhou W C 2017 RSC Adv. 7 27755Google Scholar

    [19]

    Wu F, Xie A, Sun M X, Jiang W C, Zhang K 2017 Mater. Lett. 193 30Google Scholar

    [20]

    Lü H L, Zhang H Q, Ji G B 2016 Part. Part. Syst. Char. 33 656Google Scholar

    [21]

    Lan X L, Liang C Y, Wu M S, Wu N, He L A, Li Y B, Wang Z J 2018 J. Mater. Chem. C 122 18537Google Scholar

    [22]

    He D L, Wang Y, Song S L, Liu S, Deng Y 2017 ACS Appl. Mater. Interfaces 9 44839Google Scholar

    [23]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar

    [24]

    Wang Z, Ki D, Chen H, Berger H, Macdonald A H, Morpurgo A F 2015 Nat. Commun. 6 8339Google Scholar

    [25]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M 2015 Nat. Mater. 14 421Google Scholar

    [26]

    Wang Y, Ding Y 2015 Phys. Chem. Chem. Phys. 17 27769Google Scholar

    [27]

    Xia C, Xue B, Wang T, Peng Y, Jia Y 2015 Appl. Phys. Lett. 107 193107Google Scholar

    [28]

    Chen X P, Sun X, Yang D G, Meng R S, Tan C J, Yang Q, Liang Q H, Jiang J K 2016 J. Mater. Chem. C 4 10082Google Scholar

    [29]

    Ares P, Aguilargalindo F, Rodríguezsanmiguel D, Aldave D A, Díaztendero S, Alcamí M, Martín F, Gómezherrero J, Zamora F 2016 Adv. Mater. 30 6515Google Scholar

    [30]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S 2016 Nat. Commun. 7 13352Google Scholar

    [31]

    Davletshin A R, Ustiuzhanina S V, Kistanov A A, Saadatmand D, Dmitriev S V, Zhou K 2018 Physica B 534 63Google Scholar

    [32]

    Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C 2016 J. Mater. Chem. C 4 5434Google Scholar

    [33]

    Wei W, Dai Y, Niu C, Li X, Ma Y, Huang B 2015 J. Mater. Chem. C 3 11548Google Scholar

    [34]

    Li X, Chen W, Zhang S, Wang P, Zhong H, Lin S 2015 Nano Energy 16 310Google Scholar

    [35]

    Cai Y, Pei Q X, Zhang G, Zhang Y W 2016 J. Appl. Phys. 119 065102Google Scholar

    [36]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C. 5 9687Google Scholar

    [37]

    Cao H, Zhou Z, Zhou X, Cao J 2017 Comput. Mater. Sci. 139 179Google Scholar

    [38]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [39]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [40]

    Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P L, Constantinescu G C, Kandyba V, Barinov A 2017 Sci. Adv. 3 e16018324Google Scholar

    [41]

    Xie Z F, Sun F W, Yao R, Zhang Y, Zhang Y H, Zhang Z H, Fan J B, Ni L, Duan L 2019 Appl. Surf. Sci. 475 839Google Scholar

    [42]

    Wang L, Zhou X, Ma T, Liu D M, Gao L, Li X, Zhang J, Hu Y Z, Wang H, Dai Y D, Luo J 2017 Nanoscale 9 10846Google Scholar

    [43]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [44]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [45]

    Rajagopal A K, Callaway J 1973 Phy. Rev. B 7 1912Google Scholar

    [46]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [47]

    Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [48]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [49]

    Zhu J, Schwingenschlőgl U 2014 ACS Appl. Mater. Interfaces 6 11675Google Scholar

    [50]

    Jappor H R, Saleh Z A, Abdulsattar M A 2012 Adv. Mater. Sci. Eng. 2012 180679Google Scholar

    [51]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [52]

    Wang C, Xia Q, Nie Y, Rahman M, Guo G 2016 AIP Adv. 6 035204Google Scholar

    [53]

    Li X H, Wang B J, Cai X L, Zhang L W, Wang G D, Ke S H 2017 RSC Adv. 7 28393Google Scholar

    [54]

    Kou L 2012 J. Phys. Chem. Lett. 3 2934Google Scholar

    [55]

    Xiong A, Zhou X 2019 Mater. Res. Express 6 075907Google Scholar

    [56]

    Ke C, Wu Y, Zhou J, Wu Z, Zhang C, Li X, Kang J 2019 J. Phys. D 52 115101Google Scholar

    [57]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437Google Scholar

    [58]

    Houssa M, van den Broek B, Scalise E, Pourtois G, Afanas' Ev V, Stesmans A 2013 Phys. Chem. Chem. Phys. 15 3702Google Scholar

    [59]

    Liu Q, Li L, Li Y, Gao Z, Chen Z, Lu J 2012 J. Phys. Chem. C 116 21556Google Scholar

    [60]

    Li W, Wang T, Dai X, Ma Y, Tang Y 2017 J. Alloys Compd. 705 486Google Scholar

    [61]

    Leroux M, Grandjean N, Laügt M, Massies J, Gil B, Lefebvre P, Bigenwald P 1998 Phys. Rev. B 58 13371Google Scholar

    [62]

    Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Yun H N, Zhu Z, Amal R 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [63]

    Hu W, Li Z, Yang J 2013 J. Chem. Phys. 138 054701Google Scholar

    [64]

    Chen X, Jiang J, Liang Q, Meng R, Tan C, Yang Q, Zhang S, Zeng H 2016 J. Mater. Chem. C 4 7406

    [65]

    Sun M, Chou J P, Gao J, Cheng Y, Hu A, Tang W, Zhang G 2018 ACS Omega 3 8514Google Scholar

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究. 物理学报, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [5] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [7] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [8] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [9] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [16] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [17] 孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究. 物理学报, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [18] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算. 物理学报, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  4223
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-02-06
  • 上网日期:  2021-06-16
  • 刊出日期:  2021-06-20

/

返回文章
返回