搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强复合材料褶皱缺陷的超声成像

张海燕 宋佳昕 任燕 朱琦 马雪芬

引用本文:
Citation:

碳纤维增强复合材料褶皱缺陷的超声成像

张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬

Ultrasonic imaging of wrinkles in carbon-fiber-reinforce-polymer composites

Zhang Hai-Yan, Song Jia-Xin, Ren Yan, Zhu Qi, Ma Xue-Fen
PDF
HTML
导出引用
  • 碳纤维增强复合材料在制造和使用过程中会产生褶皱, 褶皱缺陷的存在使得纤维层起伏不平, 超声波传播至纤维界面时不同声束方向的声能量存在差异. 针对此问题, 提出一种基于声束指向性函数校正的全聚焦阵列成像方法: 制备了含褶皱缺陷的碳纤维增强复合材料试样, 建立超声阵列数据采集实验系统, 捕获全矩阵数据; 考虑超声发射/接收阵元不同声束方向的声能量差异, 提出全聚焦成像方法的校正模型; 将校正前后的全聚焦成像结果与试样的实物图和光学显微镜图像进行对比分析. 实验结果表明: 基于指向性函数校正的全聚焦成像方法能够有效降低背景噪声, 恢复出被检试样的褶皱缺陷和铺层结构等细节信息, 为碳纤维增强复合材料褶皱缺陷的精确表征提供了理论指导.
    Carbon-fiber-reinforced-polymer (CFRP) composites are widely used in aerospace, automobile and other industries because of their excellent performances. However, wrinkles will be formed during the manufacturing and service life process of composites, which is detrimental to the fatigue limit and tensile strength. Due to the fiber waviness, the presence of such defects leads to the acoustic energy difference in different beam directions during ultrasonic nondestructive testing. The directly obtained imaging amplitude cannot characterize the wrinkle properly. In order to solve this problem, the total focusing method (TFM) imaging combing the acoustic beam directivity function correction is presented. Firstly, the longitudinal wave signal is excited by an ultrasonic phased array, from which the echo data is collected by full matrix capture (FMC) in both the healthy and defected samples prepared. Then, considering the difference in acoustic energy from different beam directions of each ultrasonic transmitting/receiving array element, a correction TFM is proposed. Finally, the echo signals are post processed while the results are compared with the optical images. No wrinkle information can be indicated from the direct TFM imaging. In contrast, the wrinkles and layer-up information can be recovered from the corrected TFM imaging with an improved signal-to-noise ratio and resolution. Furthermore, owing to the directivity function, the near-surface noise can be effectively reduced and the near-surface fibrous layer information is restored. This method paves the way for the accurate, quantitative and rapid characterizing of wrinkles in real CFRP structures.
      通信作者: 张海燕, hyzh@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874255, 11904223)资助的课题
      Corresponding author: Zhang Hai-Yan, hyzh@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874255, 11904223)
    [1]

    彭金涛, 任天斌 2014 中国胶粘剂 23 48

    Peng J T, Ren J T 2014 China Adhes. 23 48

    [2]

    魏莹莹 2016 博士学位论文 (上海: 上海交通大学)

    Wei Y Y 2016 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [3]

    周典瑞, 高亮, 霍红宇, 张宝艳 2020 复合材料学报 37 1785

    Zhou D R, Gao L, Huo H Y, Zhang B Y 2020 Acta Mater. Compos. Sin. 37 1785

    [4]

    邢丽英, 冯志海, 包建文, 礼嵩明 2020 复合材料学报 37 2700

    Xing L Y, Feng Z H, Bao J W, Li S M 2020 Acta Mater. Compos. Sin. 37 2700

    [5]

    Sun S P, Liu F L, Xue S, ZengM, Zeng F X 2015 Renew. Sust. Energ. Rev. 45 589Google Scholar

    [6]

    Hagstrand P O, Bonjour F, Manson J A E 2004 Composites Part A 36 705

    [7]

    张学辉, 乔英杰, 徐宏涛, 刘瑞良 2019 中国海洋平台 34 9Google Scholar

    Zhang X H, Qiao Y J, Xu H T, Liu R L 2019 China Offshore Platform 34 9Google Scholar

    [8]

    Zeng Z W, Liao Y F, Liu X H, Lin J M, Dai Y H 2020 IEEE Trans. Instrum. Meas. 69 5755Google Scholar

    [9]

    Hsiao H M, Daniel I M 1996 Compos. Sci. Technol. 56 581Google Scholar

    [10]

    Dattoma V, Gambino B, Nobile R, Panella F W 2018 Procedia Struct. Integrity 8 444Google Scholar

    [11]

    Zhen Z, Shifeng G, Qian L, Fangsen C, Andrew A M, Zhongqing S, Menglong L 2020 Compos. Sci. Technol. 189 1

    [12]

    Wang X Y, He J J, Guo W H, Guan X F 2020 Ultrasonics 110 1

    [13]

    Nelson L J, Smith R A 2019 Composites Part A 118 1Google Scholar

    [14]

    Holmes C, Drinkwater B W, Wilcox P D 2005 NDT&E Int. 38 701

    [15]

    Pain D, Drinkwater B W 2013 Nondestruct Eval 32 215Google Scholar

    [16]

    Beatriz L V, Smith R A, Tayong R B, Antonio F L, Alfredo G 2018 Composites Part A 114 225Google Scholar

    [17]

    Wilcox P D, Holmes C, Drinkwater B W 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 1541Google Scholar

    [18]

    周正干, 彭地, 李洋, 胡宏伟 2015 机械工程学报 51 1

    Zhou Z G, Peng D, Li Y, Hu H W 2015 J. Mech. Eng. 51 1

    [19]

    Lin L, Cao H Q, Luo Z B 2018 NDT and E Int. 97 51Google Scholar

    [20]

    贾乐成, 陈世利, 白志亮, 曾周末, 杨晓霞 2017 仪器仪表学报 38 1589Google Scholar

    Jia L C, Chen S L, Bai Z L, Zeng Z M, Yang X X 2017 Chinese Journal of Scientific Instrument 38 1589Google Scholar

    [21]

    Selfridge A R, Kino G S, Khuri-Yakub B T 1980 Appl. Phys. Lett. 37 35Google Scholar

    [22]

    Tasinkevych Y, Trots I, Nowicki A, Lewin P A 2012 Ultrasonics 52 333Google Scholar

    [23]

    滕国阳 2019 博士学位论文 (浙江: 浙江大学)

    Teng G Y 2019 Ph. D. Dissertation (Zhejiang: Zhejiang University) (in Chinese)

    [24]

    Smith R A, Nelson L J, Mienczakowski M J, Wilcox P D 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 231Google Scholar

  • 图 1  全聚焦成像算法原理图

    Fig. 1.  The schematic diagram of TFM imaging.

    图 2  实验装置图

    Fig. 2.  Experimental device.

    图 3  CFRP显微镜图 (a)无褶皱; (b)有褶皱

    Fig. 3.  Microscopic image of CFRP: (a) No wrinkles; (b) wrinkles.

    图 6  试样A及其成像结果 (a)实物图; (b)图6(a)的局部放大图; (c)全聚焦成像结果; (d)图6(c)的灰度图; (e)用指向性函数校正的全聚焦成像结果; (f)图6(e)的灰度图

    Fig. 6.  Sample A and imaging results: (a) Sample A; (b) partial enlarged view of Fig.6 (a); (c) total focus method; (d) gray scale of Fig.6 (c); (e) total focus method corrected by directivity function; (f) gray scale of Fig.6 (e).

    图 7  试样B及其成像结果 (a)实物图; (b)图7(a)的局部放大图; (c)全聚焦成像结果; (d)图7(c)的灰度图; (e)用指向性函数校正的全聚焦成像结果; (f)图7(e)的灰度图

    Fig. 7.  Sample B and its imaging results: (a) Sample B; (b) partial enlarged view of Fig.7(a); (c) total focus method; (d) gray scale of Fig.7 (c); (e) total focus method corrected by directivity function; (f) gray scale of Fig.7 (e).

    图 8  试样C及其成像结果 (a)实物图; (b)图8(a)的局部放大图; (c)全聚焦成像结果; (d)图8(c)的灰度图; (e)用指向性函数校正的全聚焦成像结果; (f)图8(e)的灰度图

    Fig. 8.  Sample C and its imaging results: (a) Sample C; (b) partial enlarged view of Fig. 8 (a); (c) total focus method; (d) gray scale of Fig. 8 (c); (e) total focus method corrected by directivity function; (f) gray scale of Fig. 8 (e).

    图 4  i = j = 16时域信号

    Fig. 4.  For i = j =16 time domain signal.

    图 5  典型阵列回波信号

    Fig. 5.  Typical echo signal captured by full matrix.

    表 1  超声相控阵参数配置

    Table 1.  Parameters configuration of ultrasonic phased array.

    参数 参数
    阵元个数32 阵元宽度/mm0.9
    阵元中心距/mm1.0 采样频率/MHz50
    中心频率/MHz5 激励方式纵波
    下载: 导出CSV

    表 2  图6(f)中玻璃纤维的成像位置和实际位置对比

    Table 2.  Comparison of imaging position in Fig. 6(f) and actual position of glass fiber.

    玻璃纤维实际位置/mm成像位置/mm误差/%
    第一层底部6.05.950.83
    第二层底部9.08.851.60
    第三层底部11.511.450.04
    第四层底部14.514.152.40
    第五层底部18.017.552.50
    下载: 导出CSV
  • [1]

    彭金涛, 任天斌 2014 中国胶粘剂 23 48

    Peng J T, Ren J T 2014 China Adhes. 23 48

    [2]

    魏莹莹 2016 博士学位论文 (上海: 上海交通大学)

    Wei Y Y 2016 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [3]

    周典瑞, 高亮, 霍红宇, 张宝艳 2020 复合材料学报 37 1785

    Zhou D R, Gao L, Huo H Y, Zhang B Y 2020 Acta Mater. Compos. Sin. 37 1785

    [4]

    邢丽英, 冯志海, 包建文, 礼嵩明 2020 复合材料学报 37 2700

    Xing L Y, Feng Z H, Bao J W, Li S M 2020 Acta Mater. Compos. Sin. 37 2700

    [5]

    Sun S P, Liu F L, Xue S, ZengM, Zeng F X 2015 Renew. Sust. Energ. Rev. 45 589Google Scholar

    [6]

    Hagstrand P O, Bonjour F, Manson J A E 2004 Composites Part A 36 705

    [7]

    张学辉, 乔英杰, 徐宏涛, 刘瑞良 2019 中国海洋平台 34 9Google Scholar

    Zhang X H, Qiao Y J, Xu H T, Liu R L 2019 China Offshore Platform 34 9Google Scholar

    [8]

    Zeng Z W, Liao Y F, Liu X H, Lin J M, Dai Y H 2020 IEEE Trans. Instrum. Meas. 69 5755Google Scholar

    [9]

    Hsiao H M, Daniel I M 1996 Compos. Sci. Technol. 56 581Google Scholar

    [10]

    Dattoma V, Gambino B, Nobile R, Panella F W 2018 Procedia Struct. Integrity 8 444Google Scholar

    [11]

    Zhen Z, Shifeng G, Qian L, Fangsen C, Andrew A M, Zhongqing S, Menglong L 2020 Compos. Sci. Technol. 189 1

    [12]

    Wang X Y, He J J, Guo W H, Guan X F 2020 Ultrasonics 110 1

    [13]

    Nelson L J, Smith R A 2019 Composites Part A 118 1Google Scholar

    [14]

    Holmes C, Drinkwater B W, Wilcox P D 2005 NDT&E Int. 38 701

    [15]

    Pain D, Drinkwater B W 2013 Nondestruct Eval 32 215Google Scholar

    [16]

    Beatriz L V, Smith R A, Tayong R B, Antonio F L, Alfredo G 2018 Composites Part A 114 225Google Scholar

    [17]

    Wilcox P D, Holmes C, Drinkwater B W 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 1541Google Scholar

    [18]

    周正干, 彭地, 李洋, 胡宏伟 2015 机械工程学报 51 1

    Zhou Z G, Peng D, Li Y, Hu H W 2015 J. Mech. Eng. 51 1

    [19]

    Lin L, Cao H Q, Luo Z B 2018 NDT and E Int. 97 51Google Scholar

    [20]

    贾乐成, 陈世利, 白志亮, 曾周末, 杨晓霞 2017 仪器仪表学报 38 1589Google Scholar

    Jia L C, Chen S L, Bai Z L, Zeng Z M, Yang X X 2017 Chinese Journal of Scientific Instrument 38 1589Google Scholar

    [21]

    Selfridge A R, Kino G S, Khuri-Yakub B T 1980 Appl. Phys. Lett. 37 35Google Scholar

    [22]

    Tasinkevych Y, Trots I, Nowicki A, Lewin P A 2012 Ultrasonics 52 333Google Scholar

    [23]

    滕国阳 2019 博士学位论文 (浙江: 浙江大学)

    Teng G Y 2019 Ph. D. Dissertation (Zhejiang: Zhejiang University) (in Chinese)

    [24]

    Smith R A, Nelson L J, Mienczakowski M J, Wilcox P D 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 231Google Scholar

  • [1] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像. 物理学报, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [2] 张辉, 朱文发, 范国鹏, 张海燕. 非连续阻抗粘接结构脱粘缺陷的稀布阵列超声成像. 物理学报, 2023, 72(2): 024302. doi: 10.7498/aps.72.20221771
    [3] 李海宁, 禹利达, 甘仁杰, 张伟斌, 杨占锋. 颗粒填充复合炸药裂纹缺陷的高信噪比超声成像方法. 物理学报, 2023, 72(15): 154301. doi: 10.7498/aps.72.20230522
    [4] 罗晓飞, 王波, 彭宽, 肖嘉莹. 基于聚焦声场模型的光声层析成像时间延迟快速校正反投影方法. 物理学报, 2022, 71(7): 078102. doi: 10.7498/aps.71.20212019
    [5] 张海燕, 徐心语, 马雪芬, 朱琦, 彭丽. 超声图像中复合材料褶皱形态的Mask-RCNN识别方法. 物理学报, 2022, 71(7): 074302. doi: 10.7498/aps.71.20212009
    [6] 段韵达, 胡恒山. 轴对称指向性球面波的界面反射波. 物理学报, 2022, 71(7): 074301. doi: 10.7498/aps.71.20211718
    [7] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [8] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [9] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像. 物理学报, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [10] 郭各朴, 宿慧丹, 丁鹤平, 马青玉. 基于电阻抗层析成像的高强度聚焦超声温度监测技术. 物理学报, 2017, 66(16): 164301. doi: 10.7498/aps.66.164301
    [11] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [12] 郭俊媛, 杨士莪, 朴胜春, 莫亚枭. 基于超指向性多极子矢量阵的水下低频声源方位估计方法研究. 物理学报, 2016, 65(13): 134303. doi: 10.7498/aps.65.134303
    [13] 丁亚军, 钱盛友, 胡继文, 邹孝. 超声相控阵在多层媒质中的声场模式优化. 物理学报, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [14] 吕君, 赵正予, 周晨, 张援农. 有限振幅声波间的非线性相互作用对声源远场指向性的影响. 物理学报, 2011, 60(8): 084301. doi: 10.7498/aps.60.084301
    [15] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [16] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制. 物理学报, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [17] 张碧星, 王文龙. 凹面相控阵聚焦声场在液固界面上的反射和折射. 物理学报, 2008, 57(6): 3613-3619. doi: 10.7498/aps.57.3613
    [18] 陆明珠, 万明习, 施雨. 相控阵超声热疗场共轭直接合成的模式优化研究. 物理学报, 2001, 50(2): 347-353. doi: 10.7498/aps.50.347
    [19] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] 严仁博. 超声楔形换能器的体波和瑞利表面波指向性图案. 物理学报, 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
计量
  • 文章访问数:  6712
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-07
  • 修回日期:  2021-02-08
  • 上网日期:  2021-06-09
  • 刊出日期:  2021-06-05

/

返回文章
返回