搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率转换效率905 nm垂直腔面发射激光器的设计与制备

赵壮壮 荀孟 潘冠中 孙昀 周静涛 王大海 吴德馨

引用本文:
Citation:

高功率转换效率905 nm垂直腔面发射激光器的设计与制备

赵壮壮, 荀孟, 潘冠中, 孙昀, 周静涛, 王大海, 吴德馨

Design and fabrication of 905 nm vertical cavity surface emitting laser with high power conversion efficiency

Zhao Zhuang-Zhuang, Xun Meng, Pan Guan-Zhong, Sun Yun, Zhou Jing-Tao, Wang Da-Hai, Wu De-Xin
PDF
HTML
导出引用
  • 通过对影响垂直腔面发射激光器(vertical cavity surface emitting laser, VCSEL)的功率转换效率的因素进行理论分析, 得出斜率效率是影响功率转换效率的主要因素的结论. 为获得高功率转换效率, 通过对有源区量子阱、P型和N型分布布拉格反射镜(DBR)等进行优化, 设计出了905 nm VCSEL的外延结构并进行了高质量外延生长. 成功制备出了不同氧化孔径的905 nm VCSEL器件, 获得的最大斜率效率为1.12 W/A, 最大转换效率为44.8%. 此外, 探究了氧化孔径对VCSEL的远场和光谱特性的影响. 这种具有高功率转换效率的905 nm VCSEL器件为激光雷达的小型化、低成本化提供了良好的基础数据.
    Vertical cavity surface emitting lasers (VCSELs) have lots of excellent properties, such as circular beam, low threshold, single longitudinal mode, high speed modulation and monolithic array fabrication capability. The VCSELs have been widely used in data communication and short-distance optical interconnection. In the fields of distance detection and automatic driving, high accuracy lidars have become an indispensable component. In practical applications, 905 nm laser exhibits little absorption by the water vapor in the air. In addition, the 905 nm laser can match with both inexpensive Si detector and high response avalanche photodiode (APD). Therefore, the 905 nm semiconductor laser has become a key light source of lidar. This paper presents the design and fabrication of 905 nm VCSEL with high power conversion efficiency. First, the main factors influencing the power conversion efficiency (PCE) of VCSEL are analyzed theoretically. It is concluded that the slope efficiency contributes to the PCE most. In order to achieve a high slope efficiency, strained InGaAs is used as a quantum well material. Due to the wavelength redshift caused by the thermal effect, the lasing peak wavelength of the multiple quantum well (MQW) is designed to be about 892 nm by optimizing the In composition. The active region consists of three pairs of In0.123Ga0.88As/Al0.3Ga0.7 MQWs. The N-distributed Bragg reflectors (DBRs) are designed to have 40 pairs of Al0.9Ga0.1As/Al0.12Ga0.88As, and the P-DBRs are designed to have 20 pairs of Al0.9Ga0.1As/Al0.12Ga0.88As. The epitaxial structure is designed and grown by metal organic chemical vapor deposition (MOCVD). The cavity mode of the epitaxial wafer is around 903.7 nm. The photoluminescence (PL) spectrum is also measured. The peak wavelength is approximately 893.7 nm, and the full width at half maximum is 21.6 nm. Then, the 905 nm VCSELs with different apertures (6–18 μm) are fabricated via semiconductor technologies such as photolithography, evaporation, inductively coupled plasma (ICP), wet oxidation, electroplating, etc. Finally, the L-I-V characteristics and spectra of VCSELs with different apertures are tested. The obtained maximum slope efficiency and PCE of the devices are 1.12 W/A and 44.8%, respectively. In addition, the influences of aperture size on the far-field profiles and spectra of the devices are investigated. These 905 nm VCSELs with high PCE are potential for the miniaturization and lowing the cost of LiDAR.
      通信作者: 荀孟, xunmeng@ime.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61804175)、中国科学院前沿科学重点研究计划 (批准号: ZDBS-LYJSC031)和博新计划(批准号: BX20200358) 资助的课题
      Corresponding author: Xun Meng, xunmeng@ime.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61804175), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LYJSC031), and the Project Funded by China Postdoctoral Science Foundation (Grant No. BX20200358)
    [1]

    Huffaker D L, Deppe D G 1994 Appl. Phys. Lett. 65 97Google Scholar

    [2]

    张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204Google Scholar

    Zhang X, Zhang Y, Zhang J W, Zhang J, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phy. Sin. 65 134204Google Scholar

    [3]

    Larisch G, Moser P, Lott J A, Bimberg D 2016 IEEE Photonic Technol. Lett. 28 2327Google Scholar

    [4]

    Jaeger, R, Grabherr, M, Jung, C, Michalzik, Reiner, G, Weigl 1997 Electron. Lett. 33 330Google Scholar

    [5]

    Yang X, Li M X, Zhao G, Freisem S, Deppe D G 2014 Electron. Lett. 50 1864Google Scholar

    [6]

    Mukoyama N, Otoma H, Sakurai J, Ueki N, Nakayama H 2008 Proc. SPIE 6908 690815

    [7]

    Seurin J F, Zhou D, Xu G, Miglo A, Ghosh C 2016 Proc. SPIE 9766 97660DGoogle Scholar

    [8]

    Larsson A 2011 IEEE J. Sel.Top. Quantum Electron. 17 1552Google Scholar

    [9]

    Harris J S, Sullivan T O, Sarmiento T, Lee M M, Vo S 2010 Semicond. Sci. Technol. 26 14010

    [10]

    Zhou D, Seurin J F, Xu G, Leeuwen R V, Miglo A, Wang Q, Kovsh A, Ghosh C 2017 Proc. SPIE 10122 1012206Google Scholar

    [11]

    Hao Y Q, Ma J L, Yan C L, Liu G J, Zhao Y J 2013 Laser Physics Letters 10 527

    [12]

    Pan G Z, Xie Y, Xu C, Xun M, Dong Y, Deng J, Chen H, Sun J 2018 IEEE J. Quantum Electron. 54 1

    [13]

    Zhong C, Zhang X, Hofmann W H E, Ning Y Q, Wang L J 2018 IEEE Photonics J. 10 1

    [14]

    Huang C Y, Wang H Y, Wu C H, Lo W C, Lin G R 2020 J. Lightwave Technol. 38 573Google Scholar

    [15]

    Xun M, Xu C, Xie Y, Deng J, Xu K, Chen H 2014 IEEE J. Quantum Electron. 51 1

    [16]

    郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣 2011 物理学报 60 064201Google Scholar

    Hao Y Q, Feng Y, Wang F, Yan C L, Zhao Y J, Wang X H, Wang Y X, Jiang H L, Gao X 2011 Acta Phy. Sin. 60 064201Google Scholar

    [17]

    周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇 2018 物理学报 67 104205Google Scholar

    Zhou G Z, Rao S, Yu H Y, Lv C C, Wang Q, Zhou T B, Li Y, Lan T, Xia Y, Lang L G, Cheng L W, Dong G L, Kang L H, Wang Z Y 2018 Acta Phy. Sin. 67 104205Google Scholar

    [18]

    Warren M E, Carson R F, Joseph J R, Wilcox T, Dacha P, D. Abell J, Otis K J 2015 Proc. SPIE 9381 93810CGoogle Scholar

    [19]

    Zhang J W, Ning Y Q, Zhang X, Qiu J, Zeng Y G, Fu X H, Zhang J Y, Qin L, Wang L J 2018 Jpn. J. Appl. Phys. 57 100302Google Scholar

    [20]

    Chen X N, Shi J W, Chi K L, Y J L, Chen Jaso 2017 J. Lightwave Technol. 35 3242Google Scholar

    [21]

    Nanni J, Fernandez L, Hadi M U, Viana C, Tartarini G 2020 Electron. Lett. 56 385Google Scholar

    [22]

    Caliman A, Mereuta A, Wolf P, Sirbu A, Iakovlev V, Bimberg D, Kapon E 2016 Opt. Express 24 16329Google Scholar

    [23]

    Chase C, Yi R, Hofmann W, Chang-Hasnain C J 2010 Opt. Express 15 15461

    [24]

    Li X P, Peng Q J, Xu Z Y, Zhang X D, Wang X J 2020 IEEE Photonics Technol. Lett. 32 434Google Scholar

    [25]

    Seurin J F, Ghosh C L, Khalfin V, Miglo A, Xu G, Wynn J D, Pradhan P, D'Asaro L A 2008 Proc. SPIE 6908 690808Google Scholar

    [26]

    Kressel, Henry 1977 Semiconductor Lasers and Heterojunction LEDs (New York: Academic) pp459−465

    [27]

    Coldren, Larry A 1995 Opt. Eng. 36 616

    [28]

    于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lv Z C, Cheng L W, Lang L G, Xia Y 2019 Acta Phy. Sin. 68 064207Google Scholar

    [29]

    Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y, Kano F 2009 IEEE J. Quantum Electron. 45 1183Google Scholar

    [30]

    周梅, 赵德刚 2016 物理学报 65 077802Google Scholar

    Zhou M, Zhao D G 2016 Acta Phy. Sin. 65 077802Google Scholar

  • 图 1  不同In组分下的InxGa1–xAs /Al0.3Ga0.6As量子阱增益谱(载流子浓度为5 × 1018 cm–3)

    Fig. 1.  Gain spectra of InxGa1–xAs/Al0.3Ga0.6As QW with different In compositions (carrier concentration is 5 × 1018 cm–3).

    图 2  不同量子阱厚度、In组分下的InxGa1–xAs/Al0.3Ga0.6As量子阱增益随载流子浓度的变化

    Fig. 2.  Gain spectra of InxGa1–xAs/Al0.3Ga0.6As QW with different well widths and In compositions versus carrier density.

    图 3  计算的不同对数的P-DBRs的反射谱

    Fig. 3.  Calculated reflection spectra of P-DBRs with different pairs.

    图 4  测试的905 nm VCSEL外延片的 (a)白光反射谱和(b) PL谱

    Fig. 4.  Measured (a) white light reflection spectrum and (b) PL spectrum of 905 nm VCSEL epitaxial wafer.

    图 5  VCSEL器件结构示意图

    Fig. 5.  Schematic diagram of VCSEL device structure.

    图 6  不同氧化孔径的VCSEL对应的 (a)输出功率-电流特性; (b) 电压-电流特性; (c)阈值电流; (d)最大功率; (e)饱和电流; (f)阈值损耗功率

    Fig. 6.  (a) L-I characteristics; (b) V-I characteristics; (c) threshold currents; (d) maximum output powers; (e) roll-over currents; (f) threshold power consumption of VCSELs with varied oxide apertures.

    图 7  测试的不同氧化孔径的VCSEL的 (a)斜率效率; (b)提取的最大微分斜率效率; (c) PCE; (d)提取的最大PCE的值

    Fig. 7.  Measured (a) slope efficiency; (b) extracted maximum differential slope efficiency; (c) PCE and (d) extracted maximum PCE for VCSELs with varied oxide apertures.

    图 8  不同氧化孔径的VCSEL的远场和光谱

    Fig. 8.  Far-field and spectra of VCSELs with different oxide apertures.

  • [1]

    Huffaker D L, Deppe D G 1994 Appl. Phys. Lett. 65 97Google Scholar

    [2]

    张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204Google Scholar

    Zhang X, Zhang Y, Zhang J W, Zhang J, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phy. Sin. 65 134204Google Scholar

    [3]

    Larisch G, Moser P, Lott J A, Bimberg D 2016 IEEE Photonic Technol. Lett. 28 2327Google Scholar

    [4]

    Jaeger, R, Grabherr, M, Jung, C, Michalzik, Reiner, G, Weigl 1997 Electron. Lett. 33 330Google Scholar

    [5]

    Yang X, Li M X, Zhao G, Freisem S, Deppe D G 2014 Electron. Lett. 50 1864Google Scholar

    [6]

    Mukoyama N, Otoma H, Sakurai J, Ueki N, Nakayama H 2008 Proc. SPIE 6908 690815

    [7]

    Seurin J F, Zhou D, Xu G, Miglo A, Ghosh C 2016 Proc. SPIE 9766 97660DGoogle Scholar

    [8]

    Larsson A 2011 IEEE J. Sel.Top. Quantum Electron. 17 1552Google Scholar

    [9]

    Harris J S, Sullivan T O, Sarmiento T, Lee M M, Vo S 2010 Semicond. Sci. Technol. 26 14010

    [10]

    Zhou D, Seurin J F, Xu G, Leeuwen R V, Miglo A, Wang Q, Kovsh A, Ghosh C 2017 Proc. SPIE 10122 1012206Google Scholar

    [11]

    Hao Y Q, Ma J L, Yan C L, Liu G J, Zhao Y J 2013 Laser Physics Letters 10 527

    [12]

    Pan G Z, Xie Y, Xu C, Xun M, Dong Y, Deng J, Chen H, Sun J 2018 IEEE J. Quantum Electron. 54 1

    [13]

    Zhong C, Zhang X, Hofmann W H E, Ning Y Q, Wang L J 2018 IEEE Photonics J. 10 1

    [14]

    Huang C Y, Wang H Y, Wu C H, Lo W C, Lin G R 2020 J. Lightwave Technol. 38 573Google Scholar

    [15]

    Xun M, Xu C, Xie Y, Deng J, Xu K, Chen H 2014 IEEE J. Quantum Electron. 51 1

    [16]

    郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣 2011 物理学报 60 064201Google Scholar

    Hao Y Q, Feng Y, Wang F, Yan C L, Zhao Y J, Wang X H, Wang Y X, Jiang H L, Gao X 2011 Acta Phy. Sin. 60 064201Google Scholar

    [17]

    周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇 2018 物理学报 67 104205Google Scholar

    Zhou G Z, Rao S, Yu H Y, Lv C C, Wang Q, Zhou T B, Li Y, Lan T, Xia Y, Lang L G, Cheng L W, Dong G L, Kang L H, Wang Z Y 2018 Acta Phy. Sin. 67 104205Google Scholar

    [18]

    Warren M E, Carson R F, Joseph J R, Wilcox T, Dacha P, D. Abell J, Otis K J 2015 Proc. SPIE 9381 93810CGoogle Scholar

    [19]

    Zhang J W, Ning Y Q, Zhang X, Qiu J, Zeng Y G, Fu X H, Zhang J Y, Qin L, Wang L J 2018 Jpn. J. Appl. Phys. 57 100302Google Scholar

    [20]

    Chen X N, Shi J W, Chi K L, Y J L, Chen Jaso 2017 J. Lightwave Technol. 35 3242Google Scholar

    [21]

    Nanni J, Fernandez L, Hadi M U, Viana C, Tartarini G 2020 Electron. Lett. 56 385Google Scholar

    [22]

    Caliman A, Mereuta A, Wolf P, Sirbu A, Iakovlev V, Bimberg D, Kapon E 2016 Opt. Express 24 16329Google Scholar

    [23]

    Chase C, Yi R, Hofmann W, Chang-Hasnain C J 2010 Opt. Express 15 15461

    [24]

    Li X P, Peng Q J, Xu Z Y, Zhang X D, Wang X J 2020 IEEE Photonics Technol. Lett. 32 434Google Scholar

    [25]

    Seurin J F, Ghosh C L, Khalfin V, Miglo A, Xu G, Wynn J D, Pradhan P, D'Asaro L A 2008 Proc. SPIE 6908 690808Google Scholar

    [26]

    Kressel, Henry 1977 Semiconductor Lasers and Heterojunction LEDs (New York: Academic) pp459−465

    [27]

    Coldren, Larry A 1995 Opt. Eng. 36 616

    [28]

    于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lv Z C, Cheng L W, Lang L G, Xia Y 2019 Acta Phy. Sin. 68 064207Google Scholar

    [29]

    Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y, Kano F 2009 IEEE J. Quantum Electron. 45 1183Google Scholar

    [30]

    周梅, 赵德刚 2016 物理学报 65 077802Google Scholar

    Zhou M, Zhao D G 2016 Acta Phy. Sin. 65 077802Google Scholar

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 伍亚东, 朱仁江, 晏日, 彭雪芳, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 高转换效率腔内倍频外腔面发射蓝光激光器. 物理学报, 2024, 73(1): 014203. doi: 10.7498/aps.73.20231278
    [3] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [4] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟. 物理学报, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [5] 周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军. 795 nm高温高功率垂直腔面发射激光器及原子陀螺仪应用. 物理学报, 2022, 71(13): 134204. doi: 10.7498/aps.71.20212422
    [6] 宿非凡, 杨钊华, 赵寿宽, 严海生, 田野, 赵士平. 铌基超导量子比特及辅助器件的制备. 物理学报, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [7] 潘冠中, 荀孟, 赵壮壮, 孙昀, 蒋文静, 周静涛, 吴德馨. 高功率密度多结级联905 nm垂直腔面发射激光器. 物理学报, 2022, 71(20): 204203. doi: 10.7498/aps.71.20220888
    [8] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [9] 周广正, 李颖, 兰天, 代京京, 王聪聪, 王智勇. 垂直腔面发射激光器与异质结双极型晶体管集成结构的设计和模拟. 物理学报, 2019, 68(20): 204203. doi: 10.7498/aps.68.20190529
    [10] 于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮. 940 nm垂直腔面发射激光器的设计及制备. 物理学报, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [11] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [12] 王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲. 高功率、高效率808nm半导体激光器阵列. 物理学报, 2016, 65(16): 164203. doi: 10.7498/aps.65.164203
    [13] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂. 互注入垂直腔表面发射激光器的多次偏振转换特性研究. 物理学报, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [14] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化. 物理学报, 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [15] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [16] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [17] 关宝璐, 郭 霞, 杨 浩, 梁 庭, 顾晓玲, 郭 晶, 邓 军, 高 国, 沈光地. 宽调谐范围垂直腔面发射激光器特性分析及设计. 物理学报, 2007, 56(8): 4585-4589. doi: 10.7498/aps.56.4585
    [18] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [20] 李惠青, 张 杰, 崔大复, 许祖彦, 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林. 高功率垂直腔面发射半导体激光器优化设计研究. 物理学报, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
计量
  • 文章访问数:  5151
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-01-30
  • 上网日期:  2021-05-28
  • 刊出日期:  2021-06-05

/

返回文章
返回