搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非对称结构全介质超材料的类电磁诱导透明效应研究

张跃斌 马成举 张垚 金嘉升 鲍士仟 李咪 李东明

引用本文:
Citation:

基于非对称结构全介质超材料的类电磁诱导透明效应研究

张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明

Research on analogue of electromagnetically induced transparency effect based on asymmetric structure all-dielectric metamaterial

Zhang Yue-Bin, Ma Cheng-Ju, Zhang Yao, Jin Jia-Sheng, Bao Shi-Qian, Li Mi, Li Dong-Ming
PDF
HTML
导出引用
  • 本文设计了一种非对称结构的类电磁诱导透明超材料结构, 利用时域有限差分方法对其光学特性和类EIT效应进行了仿真分析, 建立了其耦合洛伦兹模型, 并对所设计超材料结构的类EIT效应进行了模拟分析. 结果表明: 利用两个长短不同的硅块明模和明模之间的耦合, 在1555 nm附近实现了类电磁诱导透明效应; 通过对该超材料的微结构参数进行优化, 实现了超高Q值(Q约为8616)的类EIT效应, 透射率可达96%; 通过调节硅块的长度以破坏超材料结构的非对称性, 实现了对类电磁诱导透明窗口的主动调控. 所设计的全介质超材料结构具有低损耗、易制备、主动可调控等优点, 在主动可调控的慢光器件、高灵敏的光学传感器、窄带滤波器等光学器件的设计中具有潜在的应用价值.
    The electromagnetically induced transparency (EIT), which is a result of destructive interference between different excitation paths in a three-energy-level atomic medium, makes opaque probe light transparent over a range of frequencies. As this EIT effect is usually accompanied with strong dispersion, it has potential applications such as slow light propagation, optical buffering, nonlinear optics, optical sensing, etc. However, for conventional quantum EIT effect which requires stable gas lasers and low temperature environment, the implementation of EIT in chip-scale applications is severely hampered by the scathing experimental requirements. Recently, the EIT-like effect in metamaterials, which are constructed by designing the artificial subwavelength functional elements and arranging the spatial sequences, attracts tremendous attention because of its advantages, such as room temperature manipulability, large bandwidth, and small sizes. In addition, the high-quality factor(Q) value obtained by EIT-like effect has great significance in designing the metamaterial-based devices. In this paper, we design an EIT-like metamaterial with such a structure. The unit cell of the proposed metamaterial is constructed by two asymmetric silicon blocks embedded on a silicon dioxide substrate. Meanwhile, we analyze its optical properties and EIT-like effects by using three-dimension (3D) FDTD method. Based on the coupled Lorentz model, the EIT-like effect of the designed metamaterial is investigated. Then, by employing the electric field distribution on the surface of the metamaterial, and combining with the three-level atomic system, the mechanism of the EIT-like effect is analyzed in detail. We find that the EIT-like effect in the proposed metamaterial has high Q value (Q ≈ 8616) and the high transmission (T = 96%). By changing the length of the silicon block to destroy the asymmetry of the metamaterial structure, an active tuning EIT-like effect is realized. Furthermore, the metamaterial structure has the advantages of low loss, easy preparation, and active-controllability. This study represents an innovative approach to designing the EIT-like metamaterial, which is expected to be useful for designing active tunable slow-light devices and highly sensitive optical sensors.
      通信作者: 马成举, chengjuma@xsyu.edu.cn
    • 基金项目: 西安石油大学创新与实践能力培养项目(批准号: YCS19211037)资助的课题
      Corresponding author: Ma Cheng-Ju, chengjuma@xsyu.edu.cn
    • Funds: Project supported by the Innovation and Practice Ability Training Fund of Xi’an Shiyou University, China (Grant No. YCS19211037)
    [1]

    Xia H, Sharpe S J, Merriam A J, Harris S E 1997 Phys. Rev. A 56 315

    [2]

    Zhou J H, Zhang C X, Liu Q R, You J, Zheng X, Cheng X A, Jiang T 2020 Nanophotonics 9 2797Google Scholar

    [3]

    Wang Z, Yu B 2013 J. Appl. Phys. 113 101Google Scholar

    [4]

    宁仁霞, 鲍婕, 焦铮 2017 物理学报 66 100202Google Scholar

    Ning R X, Bao J, Jiao Z 2017 Acta Phys. Sin. 66 100202Google Scholar

    [5]

    Boller K J, Imamo L A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [6]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Natrue 397 18Google Scholar

    [7]

    Marco P, Dario G, Liam O F, Claudio A L 2018 Opt. Express 26 8470Google Scholar

    [8]

    Lu H, Liu X M, Mao D 2012 Phys. Rev. A 85 053803Google Scholar

    [9]

    Chen M M, Xiao Z Y, Lu X J 2020 Carbon 159 273Google Scholar

    [10]

    Wang Q, Yu L, Gao H X, Chu S W, Wei P 2019 Opt. Express 27 35012Google Scholar

    [11]

    Li S X, Zhao H W, Han G J 2015 J. Elcetron. Sci. Technol. 13 117Google Scholar

    [12]

    Huang Y, Kenta N, Yuma T, Hiroaki M, Kazuhiro H, Yoshiaki K 2020 Sci. Rep. 10 20807Google Scholar

    [13]

    Liu H Q, Ren G B, Zhu B F, Li H S, Wu B L, Jian S S 2015 Opt. Commun. 353 189Google Scholar

    [14]

    Zhang S, Genov D A, Wang Y 2008 Phys. Rev. Lett. 101 218

    [15]

    Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329Google Scholar

    [16]

    Liu C X, Liu P G, Bian L, Zhou Q H, Li G S, Liu H Q 2018 Opt. Commun. 410 17Google Scholar

    [17]

    Diao J Y, Han B X, Yin J, Li X J, Lang T T, Hong Z 2019 IEEE Photonics J. 11 4601110Google Scholar

    [18]

    Yang Y, Li J N, Li J, Huang J, Yan Q, Zhang Y T, Dai H T, Yao J Q 2020 Opt. Express 28 24047

    [19]

    Hamed M N, Ehsan Z, Raheleh B J 2019 ENG SCI TECHN 22 862Google Scholar

    [20]

    Zhao Z, Wang H, Wang J 2020 China Commun. 17 180

    [21]

    韩张华 2008 博士学位论文(杭州: 浙江大学)

    Han Z H 2008 Ph. D. Dissertstion (Hangzhou: Zhejiang University) (in Chinese)

    [22]

    B.Tatian 1984 Appl. Opt. 23 4477Google Scholar

    [23]

    Han Z H, Bozhevolnyi S I 2011 Opt. Express 19 3251Google Scholar

    [24]

    Moritake Y, Kanamori Y, Hane K 2014 Opt. Lett. 39 4507Google Scholar

  • 图 1  ASADM模型结构图 (a)三维空间结构图; (b)二维平面结构图

    Fig. 1.  Structure of ASADM model: (a) Three-dimensional (3D) structure diagram; (b) two-dimensional (2D) structure diagram.

    图 2  类EIT透射光谱 (a)单独短硅块、长硅块微结构单元; (b)非对称全介质超材料的模拟计算和仿真光谱

    Fig. 2.  EIT-like transmission spectra of (a) the short silicon block, and the long silicion block, (b) the simulations and calculations for ASADM.

    图 3  ASADM类EIT效应的物理机理 (a) 1544 nm, (b) 1576 nm, (c) 1555 nm处的电场分布; (d)三能级原子系统示意图

    Fig. 3.  Physical mechanism of EIT-like effect for the proposed ASADM: (a)–(c) Electric field distribution at wavelength of (a) 1544 nm, (b) 1576 nm and (c) 1555 nm; (d) diagram of the three-level system.

    图 4  ASADM发生Mie氏共振的物理机理 (a)短硅块在1544 nm处的电场矢量分布; (b)长、短硅块在1544 nm处的磁场分布; (c)长硅块在1576 nm处的电场矢量分布; (d)长、短硅块在1576 nm处的磁场矢量分布; (e)短硅块和(f)长硅块在1555 nm处的电场矢量分布

    Fig. 4.  Physical mechanism of Mie's resonance for the proposed ASADM: (a) Electric field vector distribution of the short silicon block at 1544 nm; (b) magnetic field distribution of long and short silicon blocks at 1544 nm; (c) electric field vector distribution of long silicon block at 1576 nm; (d) magnetic field vector distribution of long and short silicon blocks at 1576 nm; The electric field vector distribution of (e) short silicon block and (f) long silicon block at 1555 nm.

    图 5  当改变 (a) 硅块间距g, (b)短硅块的长度L2和(c)硅块的宽度W时, 非对称超材料结构的透射光谱

    Fig. 5.  Transmission spectra for the proposed ASADM are illustrated when (a) the length of short-silicon block, (b) the gap of two silicon-blocks, and (c) the width of two silicon-blocks are changed.

    图 6  当改变硅块间距g, 短硅块的长度L2时, Q值的分布图

    Fig. 6.  Spectra of Q are illustrated when the gap of two silicon blocks, g and the length of short-silicon block, L2 are changed.

    图 7  当改变硅块间距g, 短硅块的长度L2时, $ F = Q \times A $的曲线图

    Fig. 7.  Spectra of $ F = Q \times A $ are illustrated when the gap of two silicon blocks, g and the length of short-silicon block, L2 are changed.

    表 1  室温下, 不同非对称类EIT超材料的最大Q因子

    Table 1.  Maximum Q factors for different asymmetric EIT metamaterials at room temperature.

    非对称结构超材料最大 Q 因子温度/K
    铜(Cu)54300
    金(Au)7.34300
    硅(Si)8616300
    下载: 导出CSV
  • [1]

    Xia H, Sharpe S J, Merriam A J, Harris S E 1997 Phys. Rev. A 56 315

    [2]

    Zhou J H, Zhang C X, Liu Q R, You J, Zheng X, Cheng X A, Jiang T 2020 Nanophotonics 9 2797Google Scholar

    [3]

    Wang Z, Yu B 2013 J. Appl. Phys. 113 101Google Scholar

    [4]

    宁仁霞, 鲍婕, 焦铮 2017 物理学报 66 100202Google Scholar

    Ning R X, Bao J, Jiao Z 2017 Acta Phys. Sin. 66 100202Google Scholar

    [5]

    Boller K J, Imamo L A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [6]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Natrue 397 18Google Scholar

    [7]

    Marco P, Dario G, Liam O F, Claudio A L 2018 Opt. Express 26 8470Google Scholar

    [8]

    Lu H, Liu X M, Mao D 2012 Phys. Rev. A 85 053803Google Scholar

    [9]

    Chen M M, Xiao Z Y, Lu X J 2020 Carbon 159 273Google Scholar

    [10]

    Wang Q, Yu L, Gao H X, Chu S W, Wei P 2019 Opt. Express 27 35012Google Scholar

    [11]

    Li S X, Zhao H W, Han G J 2015 J. Elcetron. Sci. Technol. 13 117Google Scholar

    [12]

    Huang Y, Kenta N, Yuma T, Hiroaki M, Kazuhiro H, Yoshiaki K 2020 Sci. Rep. 10 20807Google Scholar

    [13]

    Liu H Q, Ren G B, Zhu B F, Li H S, Wu B L, Jian S S 2015 Opt. Commun. 353 189Google Scholar

    [14]

    Zhang S, Genov D A, Wang Y 2008 Phys. Rev. Lett. 101 218

    [15]

    Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329Google Scholar

    [16]

    Liu C X, Liu P G, Bian L, Zhou Q H, Li G S, Liu H Q 2018 Opt. Commun. 410 17Google Scholar

    [17]

    Diao J Y, Han B X, Yin J, Li X J, Lang T T, Hong Z 2019 IEEE Photonics J. 11 4601110Google Scholar

    [18]

    Yang Y, Li J N, Li J, Huang J, Yan Q, Zhang Y T, Dai H T, Yao J Q 2020 Opt. Express 28 24047

    [19]

    Hamed M N, Ehsan Z, Raheleh B J 2019 ENG SCI TECHN 22 862Google Scholar

    [20]

    Zhao Z, Wang H, Wang J 2020 China Commun. 17 180

    [21]

    韩张华 2008 博士学位论文(杭州: 浙江大学)

    Han Z H 2008 Ph. D. Dissertstion (Hangzhou: Zhejiang University) (in Chinese)

    [22]

    B.Tatian 1984 Appl. Opt. 23 4477Google Scholar

    [23]

    Han Z H, Bozhevolnyi S I 2011 Opt. Express 19 3251Google Scholar

    [24]

    Moritake Y, Kanamori Y, Hane K 2014 Opt. Lett. 39 4507Google Scholar

  • [1] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响. 物理学报, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [2] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明. 物理学报, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [3] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [4] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [5] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [6] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [7] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [8] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [11] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [12] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [13] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [14] 刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev. 基于平面超材料的Fano谐振可调谐研究. 物理学报, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [15] 李琴, 郭红. 宽频脉冲光的传播特性. 物理学报, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
    [20] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
计量
  • 文章访问数:  4418
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 修回日期:  2021-05-16
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回