搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下环形凹槽圆柱体散射声场空间指向性调控

周彦玲 范军 王斌 李兵

引用本文:
Citation:

水下环形凹槽圆柱体散射声场空间指向性调控

周彦玲, 范军, 王斌, 李兵

Manipulating spatial directivity of acoustic scattering from a submerged cylinder by means of annular grooves

Zhou Yan-Ling, Fan Jun, Wang Bin, Li Bing
PDF
HTML
导出引用
  • 本文提出一种具有深度梯度的环形凹槽结构, 可用于调控水中有限长刚性圆柱体散射声场空间指向性. 基于声学相位阵列理论分析了环形凹槽圆柱声散射空间指向性改变的机理, 研究表明: 凹槽深度方向相位延迟和凹槽间Bragg散射的相互作用使得平面声波垂直于圆柱方向入射其正横方向散射声波发生偏转. 采用有限元方法讨论了凹槽结构参数如占空比、梯度等对圆柱散射声场空间分布特征的影响规律. 多个不同深度梯度环形凹槽单元组合圆柱体散射声场数值计算和实验结果显示: 具有环形凹槽结构圆柱体正横方向散射声波均匀偏转到预定的空间范围内, 使得圆柱体声散射场空间指向性均衡化, 改变了圆柱整体的散射特征, 这为水下目标声隐身设计和声波定向传播提供了新的方法.
    An annular groove (AG) structure with depth gradient is proposed which can manipulate the spatial distribution of the acoustic scattering field for a finite rigid cylinder in water. An analytical analysis is given for better understanding the underlying mechanism of the abnormal scattered wave, which can be accomplished by using the phased array theory. When the plane acoustic wave is normally incident, the scattering acoustic wave in the transverse direction of the cylinder deflects, which is due to the interaction between the phase delay modulated by the AG structure with varying groove depths and the Bragg scattering of adjacent grooves. The finite element method is used to calculate the acoustic scattering field of a finite rigid cylinder with annular grooves and obtain the frequency and spatial distribution characteristics. How the structural parameters such as depth, gradient, and duty ratio of the annular grooves affect the acoustic scattering field is discussed in detail. The results show that the target strength in the transverse direction decreases linearly with duty ratio increasing while the target strength in the deflection direction of the acoustic wave increases with the duty ratio until δ = 30%, after which it remains almost constant. When the incident acoustic wave is fixed, the acoustic scattering wave of the AG cylinder can be deflected by designing the gradient appropriately, and the deflection direction is independent of the frequency. Numerical and experimental results for a cylinder with multiple annular-groove units show that the spatial directivity of the scattering field of the grooved cylinder changes, and the target strength is enhanced at six pre-designed deflection angles. Meanwhile, the deflected acoustic wave has a certain width and the interference among periodic structures of the AG units exists, which makes the spatial directivity of the scattering field of the cylinder equalize and changes the scattering characteristics of the cylinder, thereby providing a theoretical basis for designing three-dimensional underwater objects each with an acoustic stealth.
      通信作者: 范军, fanjun@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774229)资助的课题
      Corresponding author: Fan Jun, fanjun@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774229)
    [1]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar

    [2]

    Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Sci. Rep. 3 2537Google Scholar

    [3]

    Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Appl. Phys. Lett. 103 151604Google Scholar

    [4]

    Li Y, Xue J, Li R Q, Liang B, Zou X Y, Yin L L, Cheng J C 2014 Phys. Rev. Appl. 2 064002Google Scholar

    [5]

    Mei J, Wu Y 2014 New J. Phys. 16 123007Google Scholar

    [6]

    Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501Google Scholar

    [7]

    Zhu Y F, Fan X D, Liang B, Yang J, Yang J, Yin L L, Cheng J C 2016 AIP Adv. 6 121702Google Scholar

    [8]

    Ye Y T, Ke M Z, Li Y X, Wang T, Liu Z Y 2013 J. Appl. Phys. 114 154504Google Scholar

    [9]

    Chen J, Sun Z Q, Fan Z 2019 Appl. Phys. Lett. 114 254102Google Scholar

    [10]

    Li J F, Wang W Q, Xie Y B, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar

    [11]

    Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar

    [12]

    Long H Y, Gao S X, Cheng Y, Liu X J 2018 Appl. Phys. Lett. 112 033507Google Scholar

    [13]

    Li Y and M. Assouar B 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [14]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [15]

    Tian Y, Wei Q, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 110 191901Google Scholar

    [16]

    Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [17]

    Zhu Y F, Assouar B 2019 Phys. Rev. Mater. 3 045201Google Scholar

    [18]

    Christensen J, Fernandez D A I, De L P F, Martin M L, Garcia V F J 2007 Nat. Phys. 3 851Google Scholar

    [19]

    Zhu J, Chen Y Y, Zhu X F, Garcia V F J, Yin X B, Zhang W L, Zhang X 2013 Sci. Rep. 3 1728Google Scholar

    [20]

    Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys. 116 124504Google Scholar

    [21]

    Jia H, Lu M H, Wang Q C, Bao M, Li X D 2013 Appl. Phys. Lett. 103 103505Google Scholar

    [22]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966Google Scholar

    [23]

    Srivastava P, Nichols B, Sabra K G 2017 J. Acoust. Soc. Am. 142 EL573Google Scholar

    [24]

    Wu X X, Xia X X, Tian J X, Liu Z Y, Wen W J 2016 Appl. Phys. Lett. 108 163502Google Scholar

    [25]

    Liu J F, Declercq N F 2016 Appl. Phys. Lett. 109 261603Google Scholar

    [26]

    Lee H K, Jung M, Kim M, Shin R, Kang S, Ohm W, Kim Y T 2018 J. Acoust. Soc. Am. 143 1534Google Scholar

    [27]

    程建春 2019 声学原理 (北京: 科学出版社) 第89−90页

    Cheng J C 2019 Acoustical Principle (Beijing: Science Press) pp89−90 (in Chinese)

    [28]

    朱一凡, 梁彬, 程建春 2018 应用声学 37 53Google Scholar

    Zhu Y F, Liang B, Cheng J C 2018 J. Appl. Acoust. 37 53Google Scholar

    [29]

    汤渭霖, 陈德智 1988 声学学报 1 29

    Tang W L, Chen D Z 1988 Acta. Acustica. 1 29

    [30]

    汤渭霖, 范军, 马忠诚 2018 水中目标声散射 (北京: 科学出版社) 第55−66页

    Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp55−66 (in Chinese)

  • 图 1  (a)具有环形凹槽结构圆柱示意图; (b)蓝色虚线框局部放大; (c)圆柱散射声场收发分置示意图

    Fig. 1.  (a) Schematic illustration of an annular groove cylinder; (b) details of the blue dotted box; (c) bistatic diagram of simulation

    图 2  频率-角度谱 (a)刚性圆柱; (b)环形凹槽结构圆柱

    Fig. 2.  Frequency-angle spectra of target strength of the finite: (a) Rigid cylinder; (b) annular groove cylinder

    图 3  凹槽圆柱归一化指向性函数频率-角度谱

    Fig. 3.  Frequency-angle spectra of the normalized directional factors for the annular groove cylinder by Eq. (5)

    图 4  频率f = 80 kHz占空比δ = 0和δ = 83.3%凹槽圆柱目标强度空间指向性

    Fig. 4.  Spatial directivity of target strength of the annular groove cylinder with δ = 0 and 83.3% at f = 80 kHz.

    图 5  f = 80 kHz, 不同占空比凹槽圆柱在45°和90°方位目标强度

    Fig. 5.  Target strength of the annular groove cylinder with varying δ in the 45° and 90° direction at f = 80 kHz.

    图 6  f = 80 kHz, 不同梯度环形凹槽结构圆柱目标强度空间指向性

    Fig. 6.  Spatial directivity of target strength of the annular groove cylinder with different g at f = 80 kHz.

    图 7  6个环形凹槽单元组合圆柱目标强度指向性, f = 80 kHz

    Fig. 7.  Spatial directivity of target strength of the cylinder with six annular groove units at f = 80 kHz

    图 8  实验模型

    Fig. 8.  Experimental models.

    图 9  实验装置布放图

    Fig. 9.  Diagram of experimental system setup.

    图 10  时间-角度谱 (a)刚性圆柱; (b)环形凹槽单元组合圆柱

    Fig. 10.  Time-angle spectra: (a) Rigid cylinder; (b) annular groove cylinder.

    图 11  凹槽单元组合圆柱目标强度频率-角度谱 (a)数值计算结果; (b)实验结果; (c) 6个凹槽单元圆柱二维图

    Fig. 11.  Frequency-angle spectra of target strength for annular groove cylinder: (a) Numerical result; (b) experimental result; (c) 2-D geometry of the annular groove cylinder.

    图 12  频率f = 80 kHz凹槽圆柱目标强度指向性

    Fig. 12.  The normalized directivity of target strength for cylinder with six annular groove units at f = 80 kHz

    图 13  频率f = 80 kHz圆柱和凹槽圆柱目标强度实验结果对比

    Fig. 13.  The comparison of target strength in experiment between cylinder and annular groove cylinder at f = 80 kHz

  • [1]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar

    [2]

    Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Sci. Rep. 3 2537Google Scholar

    [3]

    Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Appl. Phys. Lett. 103 151604Google Scholar

    [4]

    Li Y, Xue J, Li R Q, Liang B, Zou X Y, Yin L L, Cheng J C 2014 Phys. Rev. Appl. 2 064002Google Scholar

    [5]

    Mei J, Wu Y 2014 New J. Phys. 16 123007Google Scholar

    [6]

    Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501Google Scholar

    [7]

    Zhu Y F, Fan X D, Liang B, Yang J, Yang J, Yin L L, Cheng J C 2016 AIP Adv. 6 121702Google Scholar

    [8]

    Ye Y T, Ke M Z, Li Y X, Wang T, Liu Z Y 2013 J. Appl. Phys. 114 154504Google Scholar

    [9]

    Chen J, Sun Z Q, Fan Z 2019 Appl. Phys. Lett. 114 254102Google Scholar

    [10]

    Li J F, Wang W Q, Xie Y B, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar

    [11]

    Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar

    [12]

    Long H Y, Gao S X, Cheng Y, Liu X J 2018 Appl. Phys. Lett. 112 033507Google Scholar

    [13]

    Li Y and M. Assouar B 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [14]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [15]

    Tian Y, Wei Q, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 110 191901Google Scholar

    [16]

    Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [17]

    Zhu Y F, Assouar B 2019 Phys. Rev. Mater. 3 045201Google Scholar

    [18]

    Christensen J, Fernandez D A I, De L P F, Martin M L, Garcia V F J 2007 Nat. Phys. 3 851Google Scholar

    [19]

    Zhu J, Chen Y Y, Zhu X F, Garcia V F J, Yin X B, Zhang W L, Zhang X 2013 Sci. Rep. 3 1728Google Scholar

    [20]

    Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys. 116 124504Google Scholar

    [21]

    Jia H, Lu M H, Wang Q C, Bao M, Li X D 2013 Appl. Phys. Lett. 103 103505Google Scholar

    [22]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966Google Scholar

    [23]

    Srivastava P, Nichols B, Sabra K G 2017 J. Acoust. Soc. Am. 142 EL573Google Scholar

    [24]

    Wu X X, Xia X X, Tian J X, Liu Z Y, Wen W J 2016 Appl. Phys. Lett. 108 163502Google Scholar

    [25]

    Liu J F, Declercq N F 2016 Appl. Phys. Lett. 109 261603Google Scholar

    [26]

    Lee H K, Jung M, Kim M, Shin R, Kang S, Ohm W, Kim Y T 2018 J. Acoust. Soc. Am. 143 1534Google Scholar

    [27]

    程建春 2019 声学原理 (北京: 科学出版社) 第89−90页

    Cheng J C 2019 Acoustical Principle (Beijing: Science Press) pp89−90 (in Chinese)

    [28]

    朱一凡, 梁彬, 程建春 2018 应用声学 37 53Google Scholar

    Zhu Y F, Liang B, Cheng J C 2018 J. Appl. Acoust. 37 53Google Scholar

    [29]

    汤渭霖, 陈德智 1988 声学学报 1 29

    Tang W L, Chen D Z 1988 Acta. Acustica. 1 29

    [30]

    汤渭霖, 范军, 马忠诚 2018 水中目标声散射 (北京: 科学出版社) 第55−66页

    Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp55−66 (in Chinese)

  • [1] 周彦玲, 王斌, 范军. 水中微小波纹圆柱体声散射低频共振调控. 物理学报, 2021, 70(5): 054301. doi: 10.7498/aps.70.20201535
    [2] 马瑞轩, 王益民, 张树海, 武从海, 王勋年. 旋涡声散射特性的尺度效应数值研究. 物理学报, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [3] 王益民, 马瑞轩, 武从海, 罗勇, 张树海. 旋涡声散射的空间尺度特性数值研究. 物理学报, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [4] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [5] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [6] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究. 物理学报, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [7] 秦修培, 耿德路, 洪振宇, 魏炳波. 超声悬浮过程中圆柱体的旋转运动机理研究. 物理学报, 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [8] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [9] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [10] 何春涛, 王聪, 何乾坤, 仇洋. 圆柱体低速入水空泡试验研究. 物理学报, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
    [11] 仝焕平, 章林溪. 受限于圆柱体内半刚性高分子链的螺旋结构转变. 物理学报, 2012, 61(5): 058701. doi: 10.7498/aps.61.058701
    [12] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用. 物理学报, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [13] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [14] 董全林, 王 坤, 张春熹, 刘 彬. 圆柱体相对转动动力学方程的积分解. 物理学报, 2004, 53(2): 337-342. doi: 10.7498/aps.53.337
    [15] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [16] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [17] 赵建林, 杨德兴. 圆柱体的空间圆锥光反射、折射与衍射. 物理学报, 2002, 51(9): 1972-1977. doi: 10.7498/aps.51.1972
    [18] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
    [19] 周宇峰, 王耀俊, 马力, 高天赋. 流体饱和多孔圆柱体的声波散射. 物理学报, 2000, 49(3): 480-486. doi: 10.7498/aps.49.480
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  4185
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-17
  • 修回日期:  2021-02-16
  • 上网日期:  2021-08-19
  • 刊出日期:  2021-09-05

/

返回文章
返回