-
依托兰州重离子加速器国家实验室320 kV高电荷态离子综合研究平台, 测量了动能为6.0 MeV的Xe20+离子与V, Fe, Ni, Cu, Zn靶表面作用产生的特征X射线谱, 分析了能量为1.60 keV的X射线的产生机制, 并利用经典过垒模型计算了Xe20+与不同靶作用时第一代空心原子在上表面的存在时间. 结果表明: 对于没有初始M空穴的Xe20+离子与不同靶相互作用时, 实验中没有观察到Xe的Mα X射线, 而观察到了能量为Xe的Mα X射线的两倍的X射线, 称此线为Xe的Mαα X射线, 认为其是由Xe在靶的上表面的双电子单光子过程产生的.
The inner shell process produced by the collision of highly charged ion with medium atoms near the Bragg peak is an important frontier area of atomic physics under extreme conditions such as celestial plasmas and controlled nuclear fusion plasmas. Because of the special complexity of the inner shell process produced by the collision of ions with atoms in the Bragg peak energy region and the relevant experimental research is less, limited by the experimental conditions, there remain some interesting and unanswered questions. We report the experimental data of X-ray spectra produced by the impact of Xe20+ with 6.0 MeV kinetic energy on V, Fe, Ni, Cu, and Zn surface in the National Laboratory of Heavy Ion Research Facility in Lanzhou, China. The generation mechanism of X-ray with energy of 1.60 keV is analyzed. The results show that when Xe20+ without initial holes interacts with different targets, the Mα X-ray of Xe is not observed, but X-ray with energy twice as great as that of Xe Mα X-ray is observed in the experiment, which is called Xe Mαα X-ray and considered to be generated by the two-electron-one-photon process of Xe on the upper surface of the target. The existence time of the first-generation hollow atoms on the upper surface is calculated by using the classical over-barrier model when Xe20+ interacts with different targets, which is consistent with the variation of Mαα X-ray yield with the atomic number of target, therefore it is further proved that Mαα X-ray is formed by the two-electron one-photon process of Xe on the upper surface of the target. Of course, this conclusion needs further analyzing and verifying with more experimental data. -
Keywords:
- highly charged ions /
- X-ray /
- Bragg peak energy region /
- two-electron-one-photon
[1] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar
[2] Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar
[3] Harsh M, Arvind K J, Mandeep K, Parjit S S, Sunita H 2014 Nucl. Instrum. Methods B 332 103Google Scholar
[4] Bertol A P L, Trincavelli J, Hinrichs R, Vasconcellos M A Z 2014 Nucl. Instrum. Methods B 318 19Google Scholar
[5] Watanabe H, Sun J, Tona M, Nakamura N, Sakurai M, Yamada C, Yoshiyasu N, Ohtani S 2007 Phys. Rev. A 75 062901Google Scholar
[6] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[7] 张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar
Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, W Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar
[8] Yamazaki Y, 2002 Nucl. Instrum. Methods B 193 516Google Scholar
[9] Winter H P, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar
[10] Lapicki G, Ramana Murty G A V, Naga Raju G J, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar
[11] Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar
[12] Ouzina S, Amokrane A, Toumert I 2008 Nucl. Instrum. Methods B 266 1209Google Scholar
[13] Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar
[14] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[15] Garcia J D, Fortner R J, and Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar
[16] Brandt W, Lapicki G 1974 Phys. Rev. A 10 474Google Scholar
[17] Halpern A M, Law J, 1973 Phys. Rev. Lett. 31 4
[18] Zhang X A, Zhao Y T, Hoffmann D H H, Yang Z H, Chen X M, Xu Z F, Li F L, Xiao G Q 2011 Laser Part. Beams 29 265Google Scholar
[19] Zhao Y T, Xiao G Q, Zhang X A, Ya ng, Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods B 258 121Google Scholar
[20] Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xu G, Wang Y Y, Liu S D Xiao G Q 2013 Chin. Phys. B 22 113402Google Scholar
[21] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青 2018 物理学报 67 243201Google Scholar
Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar
[22] X-RAY DATA BOOKLET, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory [EB/OL] http://xdb.lbl.gov/[2020-07-09]
[23] Schuch R, Schneider D, Knapp D A, DeWitt D, McDonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar
[24] Schuch R, Madzunkov S, Lindroth E, Fry D 2000 Phys. Rev. Lett. 85 5559Google Scholar
[25] 董志强, 周书华, 李景文, 胡爱东, 叶宗垣 1990 原子与分子物理学报 7 S1-241
Dong Z Q, Zhou S H, Ling J W, Hu A D, Ye Z Y 1990 J. Atom. Mol. Phys. 7 S1-241
-
图 1 实验平台示意图 (1, ECR离子源; 2, 分析磁体; 3, 高压加速平台; 4, 四级光阑; 5, 90°分析磁体; 6, 四极透镜; 7, 60°分析磁体; 8, 超高真空球形靶室; 9, 靶; 10, 硅漂移探测器; 11, X射线获取系统; 12, 穿透式法拉第圆筒; 13, 法拉第圆筒; 14, 离子数获取系统)
Fig. 1. Schematic drawing of experiment setup. 1, ECR ion source; 2, analyzing magnet; 3, high volt accelerate platform; 4, four-stage aperture; 5, 90° deflection magnet; 6, magnetic quadrupled lens; 7, 60° deflection magnet; 8, ultrahigh vacuum target chamber; 9, target; 10, silicon drift detector; 11, X-ray recording system; 12, penetrable faraday cup; 13, common faraday cup; 14, projectile number recording system.
表 1 6.0 MeV的Xe20+离子与不同靶作用产生的第一代空心原子在上表面的存在时间
Table 1. Flight time of the first hollow atoms from 6.0 MeV Xe20+ ions above the different target.
靶 功函数W/eV 能量增益ΔE/eV 临界距离Rc/arb.units 存在时间
t/10–16 sV 4.30 68.00 40.40 7.16 Fe 4.50 71.15 38.61 6.84 Ni 5.15 81.43 33.74 5.98 Cu 4.65 73.52 37.36 6.62 Zn 4.33 68.46 40.12 7.11 -
[1] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar
[2] Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar
[3] Harsh M, Arvind K J, Mandeep K, Parjit S S, Sunita H 2014 Nucl. Instrum. Methods B 332 103Google Scholar
[4] Bertol A P L, Trincavelli J, Hinrichs R, Vasconcellos M A Z 2014 Nucl. Instrum. Methods B 318 19Google Scholar
[5] Watanabe H, Sun J, Tona M, Nakamura N, Sakurai M, Yamada C, Yoshiyasu N, Ohtani S 2007 Phys. Rev. A 75 062901Google Scholar
[6] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[7] 张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar
Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, W Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar
[8] Yamazaki Y, 2002 Nucl. Instrum. Methods B 193 516Google Scholar
[9] Winter H P, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar
[10] Lapicki G, Ramana Murty G A V, Naga Raju G J, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar
[11] Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar
[12] Ouzina S, Amokrane A, Toumert I 2008 Nucl. Instrum. Methods B 266 1209Google Scholar
[13] Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar
[14] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[15] Garcia J D, Fortner R J, and Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar
[16] Brandt W, Lapicki G 1974 Phys. Rev. A 10 474Google Scholar
[17] Halpern A M, Law J, 1973 Phys. Rev. Lett. 31 4
[18] Zhang X A, Zhao Y T, Hoffmann D H H, Yang Z H, Chen X M, Xu Z F, Li F L, Xiao G Q 2011 Laser Part. Beams 29 265Google Scholar
[19] Zhao Y T, Xiao G Q, Zhang X A, Ya ng, Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods B 258 121Google Scholar
[20] Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xu G, Wang Y Y, Liu S D Xiao G Q 2013 Chin. Phys. B 22 113402Google Scholar
[21] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青 2018 物理学报 67 243201Google Scholar
Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar
[22] X-RAY DATA BOOKLET, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory [EB/OL] http://xdb.lbl.gov/[2020-07-09]
[23] Schuch R, Schneider D, Knapp D A, DeWitt D, McDonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar
[24] Schuch R, Madzunkov S, Lindroth E, Fry D 2000 Phys. Rev. Lett. 85 5559Google Scholar
[25] 董志强, 周书华, 李景文, 胡爱东, 叶宗垣 1990 原子与分子物理学报 7 S1-241
Dong Z Q, Zhou S H, Ling J W, Hu A D, Ye Z Y 1990 J. Atom. Mol. Phys. 7 S1-241
计量
- 文章访问数: 4320
- PDF下载量: 65
- 被引次数: 0