搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂、应变对析氢反应催化剂NiP2性能的影响

张凤 廉森 王明月 陈雪 殷继康 何磊 潘华卿 任俊峰 陈美娜

引用本文:
Citation:

掺杂、应变对析氢反应催化剂NiP2性能的影响

张凤, 廉森, 王明月, 陈雪, 殷继康, 何磊, 潘华卿, 任俊峰, 陈美娜

Doping and strain effect on hydrogen evolution reaction catalysts of NiP2

Zhang Feng, Lian Sen, Wang Ming-Yue, Chen Xue, Yin Ji-Kang, He Lei, Pan Hua-Qing, Ren Jun-Feng, Chen Mei-Na
PDF
HTML
导出引用
  • 电解水制氢可以将太阳能、风能等可持续能源中的能量转移到氢气这种高能量密度的清洁能源载体中. NiP2作为一种具有较高析氢反应(HER)催化活性的廉价催化剂而备受关注. 本文计算了NiP2(100)表面上氢的吸附能、吉布斯自由能、交换电流密度等属性, 得出其表面上P的top位点是催化活性位点的结论. 并着重分析了掺杂和应变对NiP2催化活性的影响: 1)基于常见的实验手段能产生的应变范围, 计算了1%和3%的拉伸和压缩应变的影响, 发现在NiP2上施加1%的压缩应变可以提高其HER催化性能; 2)计算了过渡金属元素及非金属元素(N, C, S)掺杂对NiP2催化性能的影响, 发现掺杂S可以显著提高P的top位点的HER催化性能, 而过渡金属元素(催化活性: Mn > Mo > W > Co > Cr > Fe > Ni)中Mn的掺杂, 可以将NiP2非活性位点的催化性能提升到跟活性位点同一个数量级, 从而间接提升NiP2的催化性能. 本工作揭示了掺杂和应变对HER催化剂性能影响的微观机理, 为设计高性能HER催化剂提供了指导.
    Hydrogen production through electrolyzing water can transfer the energy from solar energy, wind energy and other sustainable energy to hydrogen, a clean energy carrier with high energy density. The NiP2 has attracted much attention as a cheap electrocatalyst with high catalytic performance for hydrogen evolution reaction (HER). In this paper, the adsorption energy, Gibbs free energy and exchange current densities at different sites on NiP2 (100) surface are calculated. On this basis, the effect of strain and doping on the HER catalytic performance of NiP2 are studied. By calculation, we find that when H is adsorbed on the top site of P atom on NiP2 (100) surface, the exchange current density is the closest to the top of volcanic curve, so the top site of P atom on NiP2 (100) surface is the catalytic active site. The effect of doping and strain on the catalytic performance of NiP2 are analyzed. 1) According to the range of strain produced by the common experimental technology, the effects of 1% and 3% tensile and compressive strain are calculated. It is found that 1% compressive strain can improve the catalytic performance of NiP2, while when 3% compressive strain or a 1% or 3% tensile strain is applied, the catalytic performance of NiP2 is not enhanced. 2) The effects of doping transition metal elements (Co, Fe, Mn, Mo, Cu, W, Cr) and non-metallic elements (N, C, S) on the catalytic performance of NiP2 are calculated. It is found that doping non-metallic element S can significantly improve the HER catalytic performance of the top site of P atom, while the doping of transition metal elements Mn, Mo, W, Co, Cr, Fe, Cu and non-metallic elements N, C have no effect on this site. The doping of transition metal element (catalytic activity: Mn > Mo > W > Co > Cr > Fe > Ni) Mn can make the catalytic performance of inactive site improved to that of the active site, thus indirectly improving the catalytic performance of NiP2. Our work reveals the micro mechanism of the effect of doping and strain on the performance of HER electrocatalyst, which provides a new perspective for designing the high performance HER electrocatalyst.
      通信作者: 陈美娜, mnchen@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51602183, 11674197)和山东省自然科学基金(批准号: ZR2014BP003)资助的课题
      Corresponding author: Chen Mei-Na, mnchen@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602183, 11674197) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BP003)
    [1]

    Xu X, Pan Y, Zhong Y, Ran R, Shao Z 2020 Mater. Horiz. 7 2519Google Scholar

    [2]

    Chen M N, Xuan Y, Zhang F, He L, Wang X, Pan H Q, Ren J F, Lin Z J 2020 Int. J. Hydrogen Energy 45 14964Google Scholar

    [3]

    Geng C L, Yu X X, Wang P P, Cheng J G, Hong T 2020 J. Eur. Ceram. Soc. 40 3104Google Scholar

    [4]

    Zhu Z W, Zhu L, Li J R, Tang J F, Li G, Hsieh Y K, Wang T H, Wang C F 2016 J. Colloid. Interface Sci. 466 28Google Scholar

    [5]

    Lin X H, Gossenberger F, Groβ A 2016 Ind. Eng. Chem. Res. 55 11107Google Scholar

    [6]

    Lin J, Chen L, Liu T, Xia C R, Chen C S, Zhan Z L 2018 J. Power Sources 374 175Google Scholar

    [7]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Reports 5 8810Google Scholar

    [8]

    Sun M, Xuan Y, Liu G Y, Liu Y L, Zhang F, Ren J F, Chen M N 2020 J. Magn. Magn. Mater. 504 166670Google Scholar

    [9]

    陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬 2018 物理学报 67 088202Google Scholar

    Chen M N, Zhang L, Gao H Y, Xuan Y, Ren J F, Lin Z J 2018 Acta Phys. Sin. 67 088202Google Scholar

    [10]

    Chen M N, Gao H Y, Zhang L, Xuan Y, Ren J F, Ni M, Lin Z J 2019 Ceram. Int. 45 3977Google Scholar

    [11]

    He L, Xuan Y, Zhang F, Wang X, Pan H Q, Ren J F, Chen M N 2020 Int. J. Hydrogen Energy 46 1096Google Scholar

    [12]

    Wei Z L, Hou J, Zhu Z W 2016 J. Alloys. Compd. 683 474Google Scholar

    [13]

    Yang W C, Bi Y J, Qin Y P, Liu Y, Zhang X H, Yang B C, Wu Q, Wang D Y, Shi S Q 2015 J. Power Sources 275 785Google Scholar

    [14]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [15]

    He W J, Han L L, Hao Q Y, Zheng X R, Li Y, Zhang J, Liu C C, Liu H, Xin H L 2019 ACS Energy Lett. 4 2905Google Scholar

    [16]

    Conway B E, Tilak B V 2002 Electrochim. Acta 47 3571Google Scholar

    [17]

    Ouyang T, Chen A N, He Z Z, Liu Z Q, Tong Y X 2018 Chem. Commun. 54 9901Google Scholar

    [18]

    Gong S Q, Jiang Z J, Shi P H, Fan J C, Xu Q J, Min Y L 2018 Appl. Catal. B 238 318Google Scholar

    [19]

    Zhang Y Y, Lei H W, Duan D L, Villota E, Liu C, Ruan R 2018 ACS Appl. Mater. Interfaces 10 20429Google Scholar

    [20]

    Xiao P, Sk M A, Thia L, Ge X M, Lim R J, Wang J Y, Lim K H, Wang X 2014 Energy Environ. Sci. 7 2624Google Scholar

    [21]

    Aravind S S J, Ramanujachary K, Mugweru A, Vaden T D 2015 Appl. Catal. A Gen. 490 101Google Scholar

    [22]

    Wu Z X, Wang J, Xia K D, Lei W, Liu X, Wang D L 2018 J. Mater. Chem. A 6 616Google Scholar

    [23]

    Xu Y L, Yan M F, Liu Z, Wang J Y, Zhai Z Z, Ren B, Dong X X, Miao J F, Liu Z F 2020 Electrochim. Acta 363 137151Google Scholar

    [24]

    Wang J B, Chen W L, Wang T, Bate N, Wang C, Wang E 2018 Nano Res. 011 4535Google Scholar

    [25]

    Harnisch F, Sievers G, Schrder U 2009 Appl. Catal. B 89 455Google Scholar

    [26]

    Ojha K, Saha S, Kumar B, Hazra K S, Ganguli A K 2016 Chemcatchem 8 1218Google Scholar

    [27]

    Han L, Dong S J, Wang E 2016 Adv. Mater. 28 9266Google Scholar

    [28]

    Wang X D, Zhou H P, Zhang D K, Pi M Y, Feng J J, Chen S J 2018 J. Power Sources 387 1Google Scholar

    [29]

    Tian H, Wang X D, Li H Y, Pi M Y, Zhang D K, Chen S J 2020 Energy Technol. 8 1900936Google Scholar

    [30]

    Owens-Baird B, Sousa J P S, Ziouani Y, Petrovykh D Y, Zarkevich N A, Johnson D D, Kolen'Ko Y V, Kovnir K 2020 Chem. Sci. 11 5007Google Scholar

    [31]

    Wang T T, Guo X S, Zhang J Y, Xiao W, Xi P X, Peng S L, Gao D Q 2019 J. Mater. Chem. A 7 4971Google Scholar

    [32]

    Jain A, Sadan M B, Ramasubramaniam A 2020 J. Phys. Chem. C 124 12324Google Scholar

    [33]

    Li Z, Feng Y, Liang Y L, Cheng C Q, Dong C K, Liu H, Du X W 2020 Adv. Mater. 32 1908521Google Scholar

    [34]

    Ling T, Yan D Y, Wang H, Jiao Y, Hu Z P, Zheng Y, Zheng L R, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z 2017 Nat. Commun. 8 1509Google Scholar

    [35]

    Wu J B, Li P P, Pan Y T, Warren S, Yin X, Yang H 2012 Chem. Soc. Rev. 41 8066Google Scholar

    [36]

    Navickas E, Chen Y, Lu Q Y, Wallisch W, Huber T M, Bernardi J, Stöger-Pollach M, Friedbacher G, Hutter H, Yildiz B, Fleig J 2017 ACS Nano 11 11475Google Scholar

    [37]

    Gopal C B, García-Melchor M, Lee S C, Shi Y Z, Shavorskiy A, Monti M, Guan Z X, Sinclair R, Bluhm H, Vojvodic A, Chueh W C 2017 Nat. Commun. 8 15360Google Scholar

    [38]

    Kato H, Tottori Y, Sasaki K 2014 Exp. Mech. 54 489Google Scholar

    [39]

    Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [40]

    Du M S, Cui L S, Cao Y, Bard A J 2015 J. Am. Chem. Soc. 137 7397Google Scholar

    [41]

    Kresse G, Furthmüller J 1996 Phys. Rev. B Condens. Matter. 54 11169Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    He B, Chi S, Ye A, Mi P, Zhang L, Pu B, Zou Z, Ran Y, Zhao Q, Wang D 2020 Scientific Data 7 151Google Scholar

    [44]

    Hansen M H, Stern L A, Feng L G, Rossmeisl J, Hu X L 2015 Phys. Chem. Chem. Phys. 17 10823Google Scholar

    [45]

    Qu Y J, Pan H, Kwok C T, Wang Z S 2015 Phys. Chem. Chem. Phys. 17 24820Google Scholar

    [46]

    Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K 2015 J. Catal. 328 36Google Scholar

    [47]

    Zhang Y, Jiao Y, Jaroniec M, Qiao S Z 2014 Angew. Chem. Int. Ed. Engl. 54 52Google Scholar

    [48]

    Tsai C, Chan K, Abild-Pedersen F, NøRskov J K 2014 Phys. Chem. Chem. Phys. 16 13156Google Scholar

    [49]

    Jiao Y, Zheng Y, Davey K, Qiao S Z 2016 Nat. Energy 1 16130Google Scholar

    [50]

    Noerskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Cheminform 36 e12154Google Scholar

    [51]

    Liu X, Zhang L, Zheng Y, Guo Z, Zhu Y M, Chen H J, Li F, Liu P P, Yu B, Wang X W, Liu J, Chen Y 2019 Adv. Sci. 6 1801898Google Scholar

    [52]

    Wang L, Zeng Z H, Gao W P, Maxson T, Raciti D, Giroux M, Pan X Q, Wang C, Greeley J 2019 Science 363 870Google Scholar

    [53]

    Luo M C, Guo S J 2017 Nat. Rev. Mater. 2 17059Google Scholar

    [54]

    Zhu H, Gao G H, Du M L, Zhou J H, Wang K, Wu W B, Chen X, Li Y, Ma P M, Dong W F, Duan F, Chen M Q, Wu G M, Wu J D, Yang H T, Guo S J 2018 Adv. Mater. 30 1707301Google Scholar

    [55]

    Potapenko D V, Li Z S, Kysar J W, Osgood R M 2014 Nano Lett. 14 6185Google Scholar

  • 图 1  (a) NiP2 (100)表面的俯视图和NiP2 (100)表面的不同吸附位点; (b) NiP2 (100)表面的侧视图

    Fig. 1.  (a) Top view of NiP2 (100) surface and different adsorption sites on NiP2 (100) surface; (b) side view of NiP2 (100) surface.

    图 2  NiP2 (100)表面不同吸附位点的ΔG, 虚线表示H吸附位点的偏移

    Fig. 2.  ΔG on different adsorption sites on NiP2 (100) surface, the dashed line indicates the shift of H adsorption site.

    图 3  当电荷转移系数α = 0.45(黑色曲线)时, NiP2 (100)表面ΔG${j_0}$的火山型曲线, 空心符号表示通过吉布斯自由能获得的单个位点的理论交换电流密度

    Fig. 3.  Volcano plot between ${j_0}$ and ΔG with charge-transfer coefficient α = 0.45 (black solid line) of NiP2 (100) surface. The hollow symbols represent the theoretical exchange current density of a single site obtained by the value of Gibbs free energy.

    图 4  (a) 过渡金属和非金属元素掺杂前后H吸附在NiP2(100)表面位点1(P的top位点)上和掺杂原子上的ΔG; (b) 过渡金属掺杂前后H吸附在NiP2(100)表面位点2(Ni的top位点)上和掺杂的过渡金属原子上的ΔG; (c)掺杂非金属原子前后H分别吸附在NiP2(100)表面位点1(P的top位点)和掺杂的非金属原子上的ΔG; 虚线表示H吸附位点有所偏移

    Fig. 4.  (a) ΔG of H adsorbed on site 1 (top site of P atom) of NiP2 (100) surface before and after doping, (b) ΔG of H adsorbed on site 2 (top site of Ni atom) and top site of doped transition metal atom before and after doping transition metal atom respectively, (c) ΔG of H adsorbed on site 1 (top site of P atom) and top site of doped non-metallic atom on NiP2 (100) surface before and after doping non-metallic atom respectively. The dashed line indicates the shift of H adsorption site.

    图 5  NiP2 (100)表面不同应变的ΔG

    Fig. 5.  ΔG with different strain on NiP2 (100) surface.

    表 1  NiP2 (100)表面的不同位点的吸附能ΔE

    Table 1.  Adsorption energy (ΔE ) of different sites of NiP2 (100) surface.

    位点ΔE/eV
    1–0.209
    20.674
    3移动到位点1
    40.596
    50.614
    下载: 导出CSV
  • [1]

    Xu X, Pan Y, Zhong Y, Ran R, Shao Z 2020 Mater. Horiz. 7 2519Google Scholar

    [2]

    Chen M N, Xuan Y, Zhang F, He L, Wang X, Pan H Q, Ren J F, Lin Z J 2020 Int. J. Hydrogen Energy 45 14964Google Scholar

    [3]

    Geng C L, Yu X X, Wang P P, Cheng J G, Hong T 2020 J. Eur. Ceram. Soc. 40 3104Google Scholar

    [4]

    Zhu Z W, Zhu L, Li J R, Tang J F, Li G, Hsieh Y K, Wang T H, Wang C F 2016 J. Colloid. Interface Sci. 466 28Google Scholar

    [5]

    Lin X H, Gossenberger F, Groβ A 2016 Ind. Eng. Chem. Res. 55 11107Google Scholar

    [6]

    Lin J, Chen L, Liu T, Xia C R, Chen C S, Zhan Z L 2018 J. Power Sources 374 175Google Scholar

    [7]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Reports 5 8810Google Scholar

    [8]

    Sun M, Xuan Y, Liu G Y, Liu Y L, Zhang F, Ren J F, Chen M N 2020 J. Magn. Magn. Mater. 504 166670Google Scholar

    [9]

    陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬 2018 物理学报 67 088202Google Scholar

    Chen M N, Zhang L, Gao H Y, Xuan Y, Ren J F, Lin Z J 2018 Acta Phys. Sin. 67 088202Google Scholar

    [10]

    Chen M N, Gao H Y, Zhang L, Xuan Y, Ren J F, Ni M, Lin Z J 2019 Ceram. Int. 45 3977Google Scholar

    [11]

    He L, Xuan Y, Zhang F, Wang X, Pan H Q, Ren J F, Chen M N 2020 Int. J. Hydrogen Energy 46 1096Google Scholar

    [12]

    Wei Z L, Hou J, Zhu Z W 2016 J. Alloys. Compd. 683 474Google Scholar

    [13]

    Yang W C, Bi Y J, Qin Y P, Liu Y, Zhang X H, Yang B C, Wu Q, Wang D Y, Shi S Q 2015 J. Power Sources 275 785Google Scholar

    [14]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [15]

    He W J, Han L L, Hao Q Y, Zheng X R, Li Y, Zhang J, Liu C C, Liu H, Xin H L 2019 ACS Energy Lett. 4 2905Google Scholar

    [16]

    Conway B E, Tilak B V 2002 Electrochim. Acta 47 3571Google Scholar

    [17]

    Ouyang T, Chen A N, He Z Z, Liu Z Q, Tong Y X 2018 Chem. Commun. 54 9901Google Scholar

    [18]

    Gong S Q, Jiang Z J, Shi P H, Fan J C, Xu Q J, Min Y L 2018 Appl. Catal. B 238 318Google Scholar

    [19]

    Zhang Y Y, Lei H W, Duan D L, Villota E, Liu C, Ruan R 2018 ACS Appl. Mater. Interfaces 10 20429Google Scholar

    [20]

    Xiao P, Sk M A, Thia L, Ge X M, Lim R J, Wang J Y, Lim K H, Wang X 2014 Energy Environ. Sci. 7 2624Google Scholar

    [21]

    Aravind S S J, Ramanujachary K, Mugweru A, Vaden T D 2015 Appl. Catal. A Gen. 490 101Google Scholar

    [22]

    Wu Z X, Wang J, Xia K D, Lei W, Liu X, Wang D L 2018 J. Mater. Chem. A 6 616Google Scholar

    [23]

    Xu Y L, Yan M F, Liu Z, Wang J Y, Zhai Z Z, Ren B, Dong X X, Miao J F, Liu Z F 2020 Electrochim. Acta 363 137151Google Scholar

    [24]

    Wang J B, Chen W L, Wang T, Bate N, Wang C, Wang E 2018 Nano Res. 011 4535Google Scholar

    [25]

    Harnisch F, Sievers G, Schrder U 2009 Appl. Catal. B 89 455Google Scholar

    [26]

    Ojha K, Saha S, Kumar B, Hazra K S, Ganguli A K 2016 Chemcatchem 8 1218Google Scholar

    [27]

    Han L, Dong S J, Wang E 2016 Adv. Mater. 28 9266Google Scholar

    [28]

    Wang X D, Zhou H P, Zhang D K, Pi M Y, Feng J J, Chen S J 2018 J. Power Sources 387 1Google Scholar

    [29]

    Tian H, Wang X D, Li H Y, Pi M Y, Zhang D K, Chen S J 2020 Energy Technol. 8 1900936Google Scholar

    [30]

    Owens-Baird B, Sousa J P S, Ziouani Y, Petrovykh D Y, Zarkevich N A, Johnson D D, Kolen'Ko Y V, Kovnir K 2020 Chem. Sci. 11 5007Google Scholar

    [31]

    Wang T T, Guo X S, Zhang J Y, Xiao W, Xi P X, Peng S L, Gao D Q 2019 J. Mater. Chem. A 7 4971Google Scholar

    [32]

    Jain A, Sadan M B, Ramasubramaniam A 2020 J. Phys. Chem. C 124 12324Google Scholar

    [33]

    Li Z, Feng Y, Liang Y L, Cheng C Q, Dong C K, Liu H, Du X W 2020 Adv. Mater. 32 1908521Google Scholar

    [34]

    Ling T, Yan D Y, Wang H, Jiao Y, Hu Z P, Zheng Y, Zheng L R, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z 2017 Nat. Commun. 8 1509Google Scholar

    [35]

    Wu J B, Li P P, Pan Y T, Warren S, Yin X, Yang H 2012 Chem. Soc. Rev. 41 8066Google Scholar

    [36]

    Navickas E, Chen Y, Lu Q Y, Wallisch W, Huber T M, Bernardi J, Stöger-Pollach M, Friedbacher G, Hutter H, Yildiz B, Fleig J 2017 ACS Nano 11 11475Google Scholar

    [37]

    Gopal C B, García-Melchor M, Lee S C, Shi Y Z, Shavorskiy A, Monti M, Guan Z X, Sinclair R, Bluhm H, Vojvodic A, Chueh W C 2017 Nat. Commun. 8 15360Google Scholar

    [38]

    Kato H, Tottori Y, Sasaki K 2014 Exp. Mech. 54 489Google Scholar

    [39]

    Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [40]

    Du M S, Cui L S, Cao Y, Bard A J 2015 J. Am. Chem. Soc. 137 7397Google Scholar

    [41]

    Kresse G, Furthmüller J 1996 Phys. Rev. B Condens. Matter. 54 11169Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    He B, Chi S, Ye A, Mi P, Zhang L, Pu B, Zou Z, Ran Y, Zhao Q, Wang D 2020 Scientific Data 7 151Google Scholar

    [44]

    Hansen M H, Stern L A, Feng L G, Rossmeisl J, Hu X L 2015 Phys. Chem. Chem. Phys. 17 10823Google Scholar

    [45]

    Qu Y J, Pan H, Kwok C T, Wang Z S 2015 Phys. Chem. Chem. Phys. 17 24820Google Scholar

    [46]

    Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K 2015 J. Catal. 328 36Google Scholar

    [47]

    Zhang Y, Jiao Y, Jaroniec M, Qiao S Z 2014 Angew. Chem. Int. Ed. Engl. 54 52Google Scholar

    [48]

    Tsai C, Chan K, Abild-Pedersen F, NøRskov J K 2014 Phys. Chem. Chem. Phys. 16 13156Google Scholar

    [49]

    Jiao Y, Zheng Y, Davey K, Qiao S Z 2016 Nat. Energy 1 16130Google Scholar

    [50]

    Noerskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Cheminform 36 e12154Google Scholar

    [51]

    Liu X, Zhang L, Zheng Y, Guo Z, Zhu Y M, Chen H J, Li F, Liu P P, Yu B, Wang X W, Liu J, Chen Y 2019 Adv. Sci. 6 1801898Google Scholar

    [52]

    Wang L, Zeng Z H, Gao W P, Maxson T, Raciti D, Giroux M, Pan X Q, Wang C, Greeley J 2019 Science 363 870Google Scholar

    [53]

    Luo M C, Guo S J 2017 Nat. Rev. Mater. 2 17059Google Scholar

    [54]

    Zhu H, Gao G H, Du M L, Zhou J H, Wang K, Wu W B, Chen X, Li Y, Ma P M, Dong W F, Duan F, Chen M Q, Wu G M, Wu J D, Yang H T, Guo S J 2018 Adv. Mater. 30 1707301Google Scholar

    [55]

    Potapenko D V, Li Z S, Kysar J W, Osgood R M 2014 Nano Lett. 14 6185Google Scholar

  • [1] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [2] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制. 物理学报, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] 黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠. In2Se3薄膜的掺杂效应及其纳米带铁电性. 物理学报, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [4] 张兴玉. 电流密度对微米硅电极断裂行为的影响. 物理学报, 2020, 69(24): 248201. doi: 10.7498/aps.69.20200915
    [5] 徐紫巍, 石常帅, 赵光辉, 王明渊, 刘桂武, 乔冠军. 电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究. 物理学报, 2018, 67(21): 217102. doi: 10.7498/aps.67.20180882
    [6] 范立华, 曹觉先. 过渡族金属掺杂Al(111)表面对氢分子催化分解的影响. 物理学报, 2015, 64(3): 038801. doi: 10.7498/aps.64.038801
    [7] 徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥. La, Nb共掺杂BiFeO3薄膜中的光致应变效应及应力调控. 物理学报, 2014, 63(11): 117801. doi: 10.7498/aps.63.117801
    [8] 任国浩, 裴钰, 吴云涛, 陈晓峰, 李焕英, 潘尚可. 铈离子掺杂浓度对氯化镧(LaCl3:Ce)闪烁晶体发光性能的影响. 物理学报, 2014, 63(3): 037802. doi: 10.7498/aps.63.037802
    [9] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [10] 司杭, 何海燕, 潘必才. 表面效应对Li掺杂的ZnO薄膜材料p型电导的影响. 物理学报, 2012, 61(15): 157301. doi: 10.7498/aps.61.157301
    [11] 任国浩, 陈晓峰, 毛日华, 沈定中. 氟离子掺杂钨酸铅闪烁晶体的发光特性. 物理学报, 2010, 59(7): 4812-4817. doi: 10.7498/aps.59.4812
    [12] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [13] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [14] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响. 物理学报, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [15] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响. 物理学报, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [16] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应. 物理学报, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [17] 万见峰, 费燕琼, 王健农. Fe和Co对Ni2MnGa合金(110)马氏体孪晶界面电子结构的影响. 物理学报, 2006, 55(5): 2444-2448. doi: 10.7498/aps.55.2444
    [18] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [19] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [20] 孙俊生, 武传松. 熔池表面形状对电弧电流密度分布的影响. 物理学报, 2000, 49(12): 2427-2432. doi: 10.7498/aps.49.2427
计量
  • 文章访问数:  5825
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-03-03
  • 上网日期:  2021-06-22
  • 刊出日期:  2021-07-20

/

返回文章
返回