搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石/铝复合材料界面性质第一性原理计算及界面反应

祝平 张强 芶华松 王平平 邵溥真 小林郁夫 武高辉

引用本文:
Citation:

金刚石/铝复合材料界面性质第一性原理计算及界面反应

祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉

First-principles calculation of diamond/Al interface properties and study of interface reaction

Zhu Ping, Zhang Qiang, Gou Hua-Song, Wang Ping-Ping, Shao Pu-Zhen, Kobayashi Equo, Wu Gao-Hui
PDF
HTML
导出引用
  • 采用第一性原理计算和实验相结合的方法, 研究了金刚石/铝复合材料的界面性质及界面反应. 计算结果表明: 金刚石(100)/铝(111)界面粘附功更大, 相比金刚石(111)/铝(111)的界面粘附功4.14 J/m2提高了41%. 同时, 金刚石(100)/铝(111)界面处形成Al—C键合的趋势更强. Al—C键的引入能够促进金刚石(100)/铝(111)界面处C—C键的形成, 提高界面粘附功. 利用真空气压浸渗法制备金刚石/铝复合材料, 并对金刚石/铝复合材料的界面结构进行多尺度表征. 在金刚石{100}面观察到界面产物Al4C3, 且界面脱粘多发生在金刚石{111}面,实验现象与计算结果相一致. 湿热实验研究了界面反应对金刚石/铝复合材料的影响, 进一步表明抑制Al4C3生成、改善界面选择性结合对于提高金刚石/铝复合材料性能及稳定性具有重要意义. 本文的研究为第一性原理计算金刚石/金属的界面性质提供了新的思路, 也对金刚石/金属复合材料的设计具有重要的指导意义.
    First-principles calculation and experimental methods are used to study the interfacial properties and reaction of diamond/Al composites. Based on the first-principles method, the interfacial adhesion work (Wad), electronic structure and charge transfer of diamond/Al models are calculated systematically. The results show that the adhesion work of diamond(100)/Al(111) is 41% higher than that of diamond(111)/Al(111), therefore, the interface bonding of diamond(100)/Al(111) interface is stronger. According to the analysis of the electronic structure, there are more charges transferring at the diamond(100)/Al(111) interface, and the high charge density is distributed on the side of C atoms. The redistribution of charges at the interface is conducive to the formation of Al—C bond, so that the tendency of forming Al—C bonds is greater. The introduction of Al—C bond can promote the formation of C—C bond at the diamond(100)/Al(111) interface and improve the interfacial adhesion work. In addition, the diamond/Al composites are fabricated by vacuum gas pressure infiltration, and multi-scale characterization of the interface structure of diamond/Al composites is carried out. The interfacial debonding occurs mainly on the diamond {111}. Meanwhile, the interface product Al4C3 is easier to form on the diamond {100}. The experimental phenomenon is consistent with the calculated results. Moreover, the influence of the interfacial reaction on the properties and stability of diamond/Al composites are further discussed through heat-moisture treatment. The study finds that the performance degradation in heat-moisture environment is related mainly to the hydrolysis of the interface product Al4C3. After 60 days’ heat-moisture, the thermal conductivity of the diamond/Al composites decreases by 29.9%, and the bending strength is reduced by 40.1%. The large attenuation of performance is not conducive to the stability of composites in complex environments. Therefore, inhibiting the formation of Al4C3 and improving interfacial selectivity are of great importance in developing the performance and stability of diamond/Al composites. The research in this paper not only lays a theoretical foundation for the first-principles calculation of the interface properties of diamond/metal, but also possesses important guidance significance in designing the diamond/metal composites.
      通信作者: 张强, zhang_tsiang@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52071117, 51771063)资助的课题.
      Corresponding author: Zhang Qiang, zhang_tsiang@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071117, 51771063).
    [1]

    Edtmaier C, Segl J, Koos R, Schöbel M, Feldbaumer C 2020 Diamond Relat. Mater. 106 107842Google Scholar

    [2]

    Guo B S, Chen B, Zhang X M, Cen X, Wang X H, Song M, Ni S, Yi J H, Shen T, Du Y 2018 Carbon 135 224Google Scholar

    [3]

    Lu Y F, Wang X T, Zhang Y, Wang J G, Kim M J, Zhang H L 2018 J. Compos. Mater. 52 2709Google Scholar

    [4]

    Li N, Wang L H, Dai J J, Wang X T, Wang J G, Kim M J, Zhang H L 2019 Diamond Relat. Mater. 100 107565Google Scholar

    [5]

    Chen G Q, Yang W S, Xin L, Wang P P, Liu S F, Qiao J, Hu F J, Zhang Q, Wu G H 2018 J. Alloys Compd. 735 777Google Scholar

    [6]

    Edtmaier C, Segl J, Rosenberg E, Liedl G, Pospichal R, Steiger-Thirsfeld A 2018 J. Mater. Sci. 53 15514Google Scholar

    [7]

    Tan Z Q, Li Z Q, Xiong D B, Fan G L, Ji G, Zhang D 2014 Mater. Des. 55 257Google Scholar

    [8]

    Che Z F, Wang Q X, Wang L H, Li J W, Zhang H L, Zhang Y, Wang X T, Wang J G, Kim M J 2017 Composites Part B 113 285Google Scholar

    [9]

    Ji G, Tan Z Q, Li X P, Li Z Q, Kruth J P 2018 Mater. Sci. Forum 941 2184Google Scholar

    [10]

    Guo C Y, He X B, Ren S B, Qu X H 2016 J. Alloys Compd. 664 777Google Scholar

    [11]

    Tan Z Q, Ji G, Addad A, Li Z Q, Silvain J F, Zhang D 2016 Composites Part A 91 9Google Scholar

    [12]

    Monje I E, Louis E, Molina J M 2013 Composites Part A 48 9Google Scholar

    [13]

    Wu J H, Zhang H L, Zhang Y, Li J W, Wang X T 2012 Mater. Des. 39 87Google Scholar

    [14]

    Monje I E, Louis E, Molina J M 2016 Scr. Mater. 115 159Google Scholar

    [15]

    Li X J, Yang W L, Sang J Q, Zhu J J, Fu L C, Li DY, Zhou L P 2020 J. Alloys Compd. 846 156258Google Scholar

    [16]

    张恒, 黄燕, 石旺舟, 周孝好, 陈效双 2019 物理学报 68 207302Google Scholar

    Zhang H, Huang Y, Shi W Z, Zhou X H, Chen X S 2019 Acta Phys. Sin. 68 207302Google Scholar

    [17]

    董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献 2016 物理学报 65 068201Google Scholar

    Dong S, Zhang Y X, Zhang X L, Xu X P, Mao J J, Li D L, Chen Z M, Ma K, Fan Z Q, Wei D D, Yang Z X 2016 Acta Phys. Sin. 65 068201Google Scholar

    [18]

    Zhao Z Y, Zhao W J, Bai P K, Wu L Y, Huo P C 2019 Mater. Lett. 255 126559Google Scholar

    [19]

    Chen L, Chen S T, Hou Y 2019 Carbon 148 249Google Scholar

    [20]

    Xie H N, Chen Y T, Zhang T B, Zhao N Q, Shi C S, He C N, Liu E Z 2020 Appl. Surf. Sci. 527 146817Google Scholar

    [21]

    Fathzadeh M, Fahrvandi H, Nadimi E 2020 Nanotechnology 31 025710Google Scholar

    [22]

    Qi Y, Hector L G 2003 Phys. Rev. B 68 201403Google Scholar

    [23]

    吴孔平, 孙昌, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇 2017 物理学报 66 088102Google Scholar

    Wu K P, Sun C X, Ma W F, Wang J, Wei W, Cai J, Chen C Z, Ren B, Sang L W, Liao M Y 2017 Acta Phys. Sin. 66 088102Google Scholar

    [24]

    Vanderbilt, David 1990 Phys. Rev. B 41 7892Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Monachon C, Schusteritsch G, Kaxiras E, Weber L 2014 J. Appl. Phys. 115 123509Google Scholar

    [28]

    Riley D P 1944 Nature 153 587Google Scholar

    [29]

    Liu L M, Wang S Q, Ye H Q 2004 Surf. Sci. 550 46Google Scholar

    [30]

    Xu X Y, Wang H Y, Zha M, Wang C, Yang Z Z, Jiang Q C 2018 Appl. Surf. Sci. 437 103Google Scholar

    [31]

    Liu R, Yin X M, Feng K X, Xu R 2018 Comput. Mater. Sci. 149 373Google Scholar

    [32]

    Che Z F, Zhang Y, Li J W, Zhang H L, Wang X T, Sun C, Wang J G, Kim M J 2016 J. Alloys Compd. 657 81Google Scholar

    [33]

    Monje I E, Louis E, Molina J M 2016 J. Mater. Sci. 51 8027Google Scholar

  • 图 1  (a), (b) 金刚石(111)/铝(111)主、俯视图; (c), (d) 金刚石(100)/铝(111)主、俯视图

    Fig. 1.  (a), (b) Front and top view of model diamond (111)/Al(111); (c), (d) front and top view of model diamond(100)/Al(111).

    图 2  (a), (b) 金刚石(111)/铝(111); (c), (d) 金刚石(100)/铝(111)差分电荷密度图

    Fig. 2.  Differential charge density image of model: (a), (b) Diamond (111)/Al(111); (c), (d) diamond(100)/Al(111).

    图 3  金刚石/铝界面分波态密度 (a) 金刚石(111)/铝(111); (b) 金刚石(100)/铝(111)

    Fig. 3.  PDOS of diamond/Al interface: (a) Diamond(111)/Al(111); (b) diamond(100)/Al(111).

    图 4  金刚石/铝界面模型结构优化后局部图 (a) 金刚石(111)/铝(111); (b) 金刚石(100)/铝(111)

    Fig. 4.  Partial image of optimized structure of diamond/Al interface: (a) Diamond(111)/Al(111); (b) diamond(100)/Al(111).

    图 5  C原子在Al(111)表面吸附位置确定 (a) Al(111)表面模型; (b) C原子在Al(111)表面吸附位置俯视图; (c) Al4C3模型局部图; (d) 优化的C原子在Al(111)表面的位置

    Fig. 5.  Determination of adsorption position of C atom on Al (111) surface: (a) Al (111) surface model; (b) top view of the adsorption position of C atom on Al (111) surface; (c) the local map of Al4C3 model; (d) the position of the optimized C atom on Al (111) surface.

    图 6  修正的金刚石(100)/铝(111)模型示意图 (a), (c) 优化前; (b), (d) 优化后

    Fig. 6.  Schematic diagram of diamond(100)/Al(111) modified model: (a), (c) Before optimization; (b), (d) after optimization.

    图 7  修正的金刚石(100)/铝(111)模型差分电荷密度分析 (a) 结构优化后模型俯视图; (b) (a)中①截面差分电荷密度图; (c) (a)中②截面差分电荷密度图; (d) (b)中虚线部分的差分电荷密度图

    Fig. 7.  Differential charge density analysis of diamond(100)/Al(111) modified model: (a) Top view of the model after structure optimization; (b) cross section differential charge density diagram of ① in Fig. (a); (c) cross section differential charge density diagram of ② in Fig. (a); (d) the differential charge density diagram of the dotted line in Fig. (b).

    图 8  修正的金刚石(100)/铝(111)模型的分波态密度

    Fig. 8.  PDOS of diamond (100)/Al(111) modified model.

    图 9  复合材料中提取金刚石的SEM形貌 (a) 提取金刚石颗粒整体形貌; (b) 提取金刚石颗粒局部形貌; (c) 单个金刚石颗粒形貌; (d) {100}晶面上的Al4C3蚀坑

    Fig. 9.  SEM morphology of diamond extracted from diamond/Al composites: (a) Overall morphology of extracted diamond particles; (b) local morphology of extracted diamond particles; (c) morphology of single diamond particle; (d) Al4C3 pits on {100} plane.

    图 10  复合材料中金刚石原子力显微镜照片 (a) 金刚石{111}面; (b) 金刚石{111}面 10 μm × 10 μm面积; (c) 金刚石{100}面; (d) 金刚石{100}面10 μm × 10 μm面积

    Fig. 10.  AFM photographs of diamond surface in composites: (a) Diamond {111}; (b) diamond {111} with 10 μm × 10 μm area; (c) diamond {100}; (d) diamond {100} with 10 μm × 10 μm area.

    图 11  复合材料界面反应表征 (a) 金刚石{100}/铝界面处Al4C3形貌; (b) 金刚石/铝界面处的位相关系

    Fig. 11.  Characterization of interface reaction of composites: (a) Al4C3 morphology at the interface of diamond{100}/Al; (b) phase relationship at diamond/Al interface.

    图 12  湿热处理后金刚石/铝复合材料归一化热导率变化

    Fig. 12.  The variation of normalized thermal conductivity of diamond/Al composites after heat-moisture treatment.

    图 13  湿热处理60 d前后金刚石/铝复合材料断口形貌 (a), (b), (c) 湿热前; (d), (e), (f) 湿热后

    Fig. 13.  The fracture morphology of diamond/Al composites: (a), (b), (c) before and (d), (e), (f) after 60 days heat-moisture treatment

    表 1  金刚石/铝界面原子轨道布居分析

    Table 1.  Atomic orbital population analysis of diamond/Al interface.

    Interface modelPositionspTotalCharge
    Diamond(111)/Al(111)Al11.031.612.640.36
    Al21.031.612.640.36
    Al31.031.612.640.36
    C11.183.074.25–0.25
    Diamond(100)/Al(111)C21.183.094.26–0.26
    Al10.881.732.610.39
    Al20.891.722.600.40
    Al30.881.732.610.39
    Al40.891.722.610.39
    C11.333.104.430.43
    C21.333.104.430.43
    下载: 导出CSV

    表 2  不同覆盖率及不同吸附位置时C原子在Al(111)表面的吸附能 (eV·atom–1)

    Table 2.  Adsorption energy of C atom on Al (111) surface with different coverage and adsorption position (eV·atom–1).

    Coverage/ML
    0.254.127.967.63
    0.506.898.628.21
    1.004.277.415.76
    下载: 导出CSV
  • [1]

    Edtmaier C, Segl J, Koos R, Schöbel M, Feldbaumer C 2020 Diamond Relat. Mater. 106 107842Google Scholar

    [2]

    Guo B S, Chen B, Zhang X M, Cen X, Wang X H, Song M, Ni S, Yi J H, Shen T, Du Y 2018 Carbon 135 224Google Scholar

    [3]

    Lu Y F, Wang X T, Zhang Y, Wang J G, Kim M J, Zhang H L 2018 J. Compos. Mater. 52 2709Google Scholar

    [4]

    Li N, Wang L H, Dai J J, Wang X T, Wang J G, Kim M J, Zhang H L 2019 Diamond Relat. Mater. 100 107565Google Scholar

    [5]

    Chen G Q, Yang W S, Xin L, Wang P P, Liu S F, Qiao J, Hu F J, Zhang Q, Wu G H 2018 J. Alloys Compd. 735 777Google Scholar

    [6]

    Edtmaier C, Segl J, Rosenberg E, Liedl G, Pospichal R, Steiger-Thirsfeld A 2018 J. Mater. Sci. 53 15514Google Scholar

    [7]

    Tan Z Q, Li Z Q, Xiong D B, Fan G L, Ji G, Zhang D 2014 Mater. Des. 55 257Google Scholar

    [8]

    Che Z F, Wang Q X, Wang L H, Li J W, Zhang H L, Zhang Y, Wang X T, Wang J G, Kim M J 2017 Composites Part B 113 285Google Scholar

    [9]

    Ji G, Tan Z Q, Li X P, Li Z Q, Kruth J P 2018 Mater. Sci. Forum 941 2184Google Scholar

    [10]

    Guo C Y, He X B, Ren S B, Qu X H 2016 J. Alloys Compd. 664 777Google Scholar

    [11]

    Tan Z Q, Ji G, Addad A, Li Z Q, Silvain J F, Zhang D 2016 Composites Part A 91 9Google Scholar

    [12]

    Monje I E, Louis E, Molina J M 2013 Composites Part A 48 9Google Scholar

    [13]

    Wu J H, Zhang H L, Zhang Y, Li J W, Wang X T 2012 Mater. Des. 39 87Google Scholar

    [14]

    Monje I E, Louis E, Molina J M 2016 Scr. Mater. 115 159Google Scholar

    [15]

    Li X J, Yang W L, Sang J Q, Zhu J J, Fu L C, Li DY, Zhou L P 2020 J. Alloys Compd. 846 156258Google Scholar

    [16]

    张恒, 黄燕, 石旺舟, 周孝好, 陈效双 2019 物理学报 68 207302Google Scholar

    Zhang H, Huang Y, Shi W Z, Zhou X H, Chen X S 2019 Acta Phys. Sin. 68 207302Google Scholar

    [17]

    董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献 2016 物理学报 65 068201Google Scholar

    Dong S, Zhang Y X, Zhang X L, Xu X P, Mao J J, Li D L, Chen Z M, Ma K, Fan Z Q, Wei D D, Yang Z X 2016 Acta Phys. Sin. 65 068201Google Scholar

    [18]

    Zhao Z Y, Zhao W J, Bai P K, Wu L Y, Huo P C 2019 Mater. Lett. 255 126559Google Scholar

    [19]

    Chen L, Chen S T, Hou Y 2019 Carbon 148 249Google Scholar

    [20]

    Xie H N, Chen Y T, Zhang T B, Zhao N Q, Shi C S, He C N, Liu E Z 2020 Appl. Surf. Sci. 527 146817Google Scholar

    [21]

    Fathzadeh M, Fahrvandi H, Nadimi E 2020 Nanotechnology 31 025710Google Scholar

    [22]

    Qi Y, Hector L G 2003 Phys. Rev. B 68 201403Google Scholar

    [23]

    吴孔平, 孙昌, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇 2017 物理学报 66 088102Google Scholar

    Wu K P, Sun C X, Ma W F, Wang J, Wei W, Cai J, Chen C Z, Ren B, Sang L W, Liao M Y 2017 Acta Phys. Sin. 66 088102Google Scholar

    [24]

    Vanderbilt, David 1990 Phys. Rev. B 41 7892Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Monachon C, Schusteritsch G, Kaxiras E, Weber L 2014 J. Appl. Phys. 115 123509Google Scholar

    [28]

    Riley D P 1944 Nature 153 587Google Scholar

    [29]

    Liu L M, Wang S Q, Ye H Q 2004 Surf. Sci. 550 46Google Scholar

    [30]

    Xu X Y, Wang H Y, Zha M, Wang C, Yang Z Z, Jiang Q C 2018 Appl. Surf. Sci. 437 103Google Scholar

    [31]

    Liu R, Yin X M, Feng K X, Xu R 2018 Comput. Mater. Sci. 149 373Google Scholar

    [32]

    Che Z F, Zhang Y, Li J W, Zhang H L, Wang X T, Sun C, Wang J G, Kim M J 2016 J. Alloys Compd. 657 81Google Scholar

    [33]

    Monje I E, Louis E, Molina J M 2016 J. Mater. Sci. 51 8027Google Scholar

  • [1] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] 王应, 李勇, 李宗宝. B,N协同掺杂金刚石电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [6] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [7] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [8] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [9] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [10] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [11] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究. 物理学报, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [13] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [14] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [15] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [16] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [17] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [18] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [19] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [20] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
计量
  • 文章访问数:  9282
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-03-28
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回