搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辐射制冷-温室效应的热电系统性能分析

陈浩 王存海 程子明 魏琳扬 王富强 张欣欣

引用本文:
Citation:

基于辐射制冷-温室效应的热电系统性能分析

陈浩, 王存海, 程子明, 魏琳扬, 王富强, 张欣欣

Performance analysis of thermoelectric system based on radiative cooling and greenhouse effects

Chen Hao, Wang Cun-Hai, Cheng Zi-Ming, Wei Lin-Yang, Wang Fu-Qiang, Zhang Xin-Xin
PDF
HTML
导出引用
  • 基于辐射制冷和温室效应, 设计了一种无需主动能量输入的温差发电系统: 夜间利用辐射制冷降低热电模块的冷端温度, 白天利用温室效应增加热端温度, 以提高冷热端温差, 达到全天候无间断的发电效果. 实验研究了热电模块冷热端温差随时间的变化及其受环境湿度的影响. 在中国陕西的夏季实验测量和分析结果表明: 辐射制冷使热电模块冷热端在夜间维持约1.1 ℃的温差; 温室效应可使热端温度比环境温度高出13.9 ℃; 环境湿度在20%和45%的条件下, 热电模块冷热端的全天平均温差分别为1.9 ℃和1.6 ℃, 表明20%的环境湿度条件下该系统具有更好的发电性能. 本装置实现了全天候的被动能量输出, 在离网区域电力供应等方面具有潜在的应用前景.
    Electricity power has served as an essential source in our daily life. However, some remote areas that are difficult to be covered by the power grid, are still facing a serious shortage of electricity for outdoor equipment such as field monitors. Off-grid power is the alternative power in such areas, but there arise apparently economic and environmental problems. Therefore, the development of portable, pollution-free and sustainable power supply equipment has vital research significance. In this paper, based on the radiative cooling and greenhouse effects, a passive thermoelectric system without any active energy input is proposed. A square copper plate coated with a thin film of acrylic acid doped with SiO2 particles, with an average emissivity value of 0.937, is selected as a radiative cooling material. The commercial polyolefin film with a thickness of 0.12 mm is selected as a greenhouse material. The radiative cooling effect cools the cold end of the thermoelectric generator (TEG) during the nighttime, the greenhouse effect during the daytime is utilized to increase the temperature of the hot end of the TEG. The radiative cooling effect and the greenhouse effect both result in the increase of the temperature difference between the cold and hot ends, and thus obtaining the output power. During the period of time from June 17 to June 21, 2020, the performance of the designed system at the location of Shaanxi, China was evaluated experimentally, and the weather condition effects were also studied. The experimental results show that a stable temperature drop of ~1.1 ℃ of the cold end is achieved via the radiative cooling effect at night. Owing to the greenhouse effect, the temperature increase of the hot end reaches a maximum value of 13.9 ℃. When the average ambient humidity decreases from 45% to 20%, the average temperature difference between the hot end and cold end of the thermoelectric module increased from 1.6 to 1.9 ℃ throughout the day, and the average power increased from 47.8 to 67.3 mW/m2, indicating that the equipment can have better power generation performance under the condition of 20% ambient humidity. The device developed in this work realizes all-day passive output and shows that it has potential applications in off-grid power supplies.
      通信作者: 王存海, wangcunhai@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51906014)和中央高校基本科研业务费专项资金(批准号: FRF-BD-20-09A)资助的课题.
      Corresponding author: Wang Cun-Hai, wangcunhai@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51906014) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-BD-20-09A)
    [1]

    Champier D 2017 Energy Convers. Manage. 140 167Google Scholar

    [2]

    He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F, Zhao L D 2019 Science 365 1418Google Scholar

    [3]

    Kraemer D, Jie Q, Mcenaney K, Cao F, Liu W, Weinstein LA, Loomis J, Chen G 2016 Nat. Energy 1 1272

    [4]

    Rodrigo P M, Valera A, Fernández E F, Almonacid F M 2019 Appl. Energy 238 1150Google Scholar

    [5]

    Babu C, Ponnambalam P 2017 Energy Convers. Manage. 151 368Google Scholar

    [6]

    Lekbir A, Hassani S Ab, Ghani M R, Gan C K, Mekhilef S, Saidur R 2018 Energy Convers. Manage. 177 19Google Scholar

    [7]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [8]

    Lin K T, Han J, Li K, Guob C, Lina H, Jia B 2021 Nano Energy 80 105517Google Scholar

    [9]

    Li Z, Chen Q, Song Y, Zhu B, Zhu J 2020 Adv. Mater. Technol. 5 1901007Google Scholar

    [10]

    Prakash B J, Jahar S, Pralay M 2020 Renewable Sustainable Energy Rev. 133 110263Google Scholar

    [11]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [12]

    刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波 2017 物理学报 66 248801Google Scholar

    Liu S Y, Yao B, Tan Y S, Xu H T, Ji T, Fang Z B 2017 Acta Phys. Sin. 66 248801Google Scholar

    [13]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [14]

    贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民 2017 物理学报 66 237801Google Scholar

    Jia B L, Deng L L, Chen R X, Zhang Y N, Fang X M 2017 Acta Phys. Sin. 66 237801Google Scholar

    [15]

    杜玮, 尹格, 马云贵 2020 物理学报 69 204203Google Scholar

    Du W, Yin G, Ma Y G 2020 Acta Phys. Sin. 69 204203Google Scholar

    [16]

    廖天军, 吕贻祥 2020 物理学报 69 057202Google Scholar

    Liao T J, Lü Y X 2020 Acta Phys. Sin. 69 057202Google Scholar

    [17]

    Fang H, Zhao D, Yuan J, Aili A, Yin X, Tan G 2019 Appl. Energy 248 589Google Scholar

    [18]

    Zhao D, Aili A, Yin X, Yang R 2019 Energy Build. 203 109453Google Scholar

    [19]

    Hosseinzadeh E, Taherian H 2012 Int. J. Green Energy 9 766Google Scholar

    [20]

    Cai L, Song Y A, Li W, Hsu P C, Lin D, Catrysse P B, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Cui Y 2018 Adv. Mater. 30 1802152Google Scholar

    [21]

    Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Cui Y 2019 Joule 3 1478Google Scholar

    [22]

    Song Y N, Li Y, Yan D X, Lei J, Li Z 2020 Composites Part A 130 105738Google Scholar

    [23]

    Zhu L, Raman A, Wang K X, Anoma M A, Fan S 2014 Optica 1 32Google Scholar

    [24]

    Safi T S, Munday J N 2015 Opt. Express 23 A1120Google Scholar

    [25]

    Li W, Dong M, Fan L, John J J, Chen Z, Fan S 2021 ACS Photonics 8 269

    [26]

    Zhan Z, ElKabbash M, Li Z, Li X, Zhang J, Rutledge J, Singh S, Guo C 2019 Nano Energy 65 104060Google Scholar

    [27]

    Raman P A, Li W, Fan S 2019 Joule 3 2679Google Scholar

    [28]

    Mu E, Wu Z, Wu Z, Chen X, Liu Y, Fu X, Hu Z 2019 Nano Energy 55 494Google Scholar

    [29]

    Rephaeli E, Raman A, Fan S 2013 Nano Lett. 13 1457Google Scholar

    [30]

    Raman1 A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [31]

    Zhou K, Li W, Patel B B, Tao R, Chang Y, Fan S, Diao Y, Cai L 2021 Nano Lett. 21 1493Google Scholar

    [32]

    Li T, Gao Y, Zheng K, Ma Y, Ding D, Zhang H 2019 ES Energy Environ. 5 102

    [33]

    Zhang H, Ly K C, Liu X, Chen Z, Yan M, Wu Z, Wang X, Zheng Y, Zhou H, Fan T 2020 Proc. Natl. Acad. Sci. U. S. A. 117 14657Google Scholar

    [34]

    Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L 2019 Science 364 760Google Scholar

    [35]

    Chen S, Wang X, Nie G, Liu Q, Sui J, Song C, Zhu J, Fu J, Zhang J, Yan X, Long Y 2019 Chin. Phys. B 28 064401Google Scholar

    [36]

    Cheng Z, Wang F, Gong D, Liang H, Shuai Y 2020 Sol. Energy Mater. Sol. Cells 213 110563Google Scholar

    [37]

    Seebeck T 1826 Ann. Phys. 82 253Google Scholar

  • 图 1  基于辐射制冷-温室效应温差发电系统 (a)示意图; (b) 实物图

    Fig. 1.  Thermoelectric system based on radiative cooling and greenhouse effects: (a) Sketch; (b) real setup.

    图 2  辐射制冷结构 (a) 实物图; (b) SiO2/丙烯酸薄膜的电子显微图; (c) 大气窗口范围内的光谱发射率

    Fig. 2.  Radiative cooling structure: (a) The real structure; (b) the electron micrograph of the SiO2/acrylic film; (c) the spectral emissivity within the atmosphere window.

    图 3  (a) 2020年6月17日至18日热端温度、环境温度和温差的分布; (b) 6月18日8:00—12:00时间段内热端温度低于环境温度的数据点分布

    Fig. 3.  (a) Distributions of the hot side temperature, ambient temperature, and the temperature difference during June 17–18, 2020; (b) data points at which the hot end temperature is lower than the ambient temperature during the time from 8:00 to 12:00 on the day of June 18, 2020.

    图 4  (a) 2020年6月19日至21日热电模块的冷热端温度和温差; (b) 热电模块冷热端温差在2020年6月20日12:00到17:00时间段内的分布

    Fig. 4.  (a) Temperature of the hot and cold sides of the thermoelectric generator, as well as the temperature difference during June 19–21, 2020; (b) temperature difference between the time of 12:00 and 17:00 on June 20, 2020.

    图 5  不同环境湿度条件下温度对比 (a)冷热端温度分布; (b) 温差分布

    Fig. 5.  Temperature comparisons under different ambient humidity: (a) Temperature of the cold and hot ends of the thermoelectric module; (b) temperature difference.

  • [1]

    Champier D 2017 Energy Convers. Manage. 140 167Google Scholar

    [2]

    He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F, Zhao L D 2019 Science 365 1418Google Scholar

    [3]

    Kraemer D, Jie Q, Mcenaney K, Cao F, Liu W, Weinstein LA, Loomis J, Chen G 2016 Nat. Energy 1 1272

    [4]

    Rodrigo P M, Valera A, Fernández E F, Almonacid F M 2019 Appl. Energy 238 1150Google Scholar

    [5]

    Babu C, Ponnambalam P 2017 Energy Convers. Manage. 151 368Google Scholar

    [6]

    Lekbir A, Hassani S Ab, Ghani M R, Gan C K, Mekhilef S, Saidur R 2018 Energy Convers. Manage. 177 19Google Scholar

    [7]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [8]

    Lin K T, Han J, Li K, Guob C, Lina H, Jia B 2021 Nano Energy 80 105517Google Scholar

    [9]

    Li Z, Chen Q, Song Y, Zhu B, Zhu J 2020 Adv. Mater. Technol. 5 1901007Google Scholar

    [10]

    Prakash B J, Jahar S, Pralay M 2020 Renewable Sustainable Energy Rev. 133 110263Google Scholar

    [11]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [12]

    刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波 2017 物理学报 66 248801Google Scholar

    Liu S Y, Yao B, Tan Y S, Xu H T, Ji T, Fang Z B 2017 Acta Phys. Sin. 66 248801Google Scholar

    [13]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [14]

    贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民 2017 物理学报 66 237801Google Scholar

    Jia B L, Deng L L, Chen R X, Zhang Y N, Fang X M 2017 Acta Phys. Sin. 66 237801Google Scholar

    [15]

    杜玮, 尹格, 马云贵 2020 物理学报 69 204203Google Scholar

    Du W, Yin G, Ma Y G 2020 Acta Phys. Sin. 69 204203Google Scholar

    [16]

    廖天军, 吕贻祥 2020 物理学报 69 057202Google Scholar

    Liao T J, Lü Y X 2020 Acta Phys. Sin. 69 057202Google Scholar

    [17]

    Fang H, Zhao D, Yuan J, Aili A, Yin X, Tan G 2019 Appl. Energy 248 589Google Scholar

    [18]

    Zhao D, Aili A, Yin X, Yang R 2019 Energy Build. 203 109453Google Scholar

    [19]

    Hosseinzadeh E, Taherian H 2012 Int. J. Green Energy 9 766Google Scholar

    [20]

    Cai L, Song Y A, Li W, Hsu P C, Lin D, Catrysse P B, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Cui Y 2018 Adv. Mater. 30 1802152Google Scholar

    [21]

    Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Cui Y 2019 Joule 3 1478Google Scholar

    [22]

    Song Y N, Li Y, Yan D X, Lei J, Li Z 2020 Composites Part A 130 105738Google Scholar

    [23]

    Zhu L, Raman A, Wang K X, Anoma M A, Fan S 2014 Optica 1 32Google Scholar

    [24]

    Safi T S, Munday J N 2015 Opt. Express 23 A1120Google Scholar

    [25]

    Li W, Dong M, Fan L, John J J, Chen Z, Fan S 2021 ACS Photonics 8 269

    [26]

    Zhan Z, ElKabbash M, Li Z, Li X, Zhang J, Rutledge J, Singh S, Guo C 2019 Nano Energy 65 104060Google Scholar

    [27]

    Raman P A, Li W, Fan S 2019 Joule 3 2679Google Scholar

    [28]

    Mu E, Wu Z, Wu Z, Chen X, Liu Y, Fu X, Hu Z 2019 Nano Energy 55 494Google Scholar

    [29]

    Rephaeli E, Raman A, Fan S 2013 Nano Lett. 13 1457Google Scholar

    [30]

    Raman1 A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [31]

    Zhou K, Li W, Patel B B, Tao R, Chang Y, Fan S, Diao Y, Cai L 2021 Nano Lett. 21 1493Google Scholar

    [32]

    Li T, Gao Y, Zheng K, Ma Y, Ding D, Zhang H 2019 ES Energy Environ. 5 102

    [33]

    Zhang H, Ly K C, Liu X, Chen Z, Yan M, Wu Z, Wang X, Zheng Y, Zhou H, Fan T 2020 Proc. Natl. Acad. Sci. U. S. A. 117 14657Google Scholar

    [34]

    Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L 2019 Science 364 760Google Scholar

    [35]

    Chen S, Wang X, Nie G, Liu Q, Sui J, Song C, Zhu J, Fu J, Zhang J, Yan X, Long Y 2019 Chin. Phys. B 28 064401Google Scholar

    [36]

    Cheng Z, Wang F, Gong D, Liang H, Shuai Y 2020 Sol. Energy Mater. Sol. Cells 213 110563Google Scholar

    [37]

    Seebeck T 1826 Ann. Phys. 82 253Google Scholar

  • [1] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术. 物理学报, 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [2] 王宇枭, 成泽帅, 江可扬, 魏琳扬, 历秀明. 基于辐射制冷与电致变色的可调节多层膜性能研究. 物理学报, 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [3] 阳润恒, 安顺, 尚文, 邓涛. 仿生辐射制冷的研究进展. 物理学报, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [4] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [5] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展. 物理学报, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [6] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究. 物理学报, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [7] 常松涛, 孙志远, 张尧禹, 朱玮. 制冷型红外成像系统内部杂散辐射测量方法. 物理学报, 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [8] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [9] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [10] 程晓舫, 辛成运, 王鲁平, 张忠政. 辐射测量中的成像效应. 物理学报, 2013, 62(12): 120702. doi: 10.7498/aps.62.120702
    [11] 刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青. 平板集热太阳热电器件建模及结构优化. 物理学报, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [12] 何弦, 何济洲, 肖宇玲. 四能级量子制冷循环. 物理学报, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [13] 王永田, 刘宗德, 易军, 薛志勇. Gd基非晶与Gd纳米晶复合结构的磁制冷效应. 物理学报, 2012, 61(5): 056102. doi: 10.7498/aps.61.056102
    [14] 贾佑华, 钟标, 印建平. Tm3+ 掺杂ZrF4 -BaF2 -LaF3 -AlF3 -NaF-PbF2玻璃激光制冷中荧光再吸收效应的理论分析. 物理学报, 2011, 60(12): 124209. doi: 10.7498/aps.60.124209
    [15] 刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕, 杨正龙. 太阳能光伏-温差发电驱动的新型冰箱模型设计与热力学分析. 物理学报, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [16] 毛邦宁, 潘佰良, 陈 钢, 夏婷婷. 碱土金属原子激光的共振辐射俘获效应. 物理学报, 2006, 55(4): 1793-1797. doi: 10.7498/aps.55.1793
    [17] 韩 鹏, 金奎娟, 周岳亮, 周庆莉, 王 旭, 赵嵩卿, 马中水. GaAs/Ga1-xAlxAs半导体量子阱光辐射-热离子制冷. 物理学报, 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
    [18] 秦伟平, 张家骅, 黄世华. 固体中非均匀线形内能量传递引起的荧光制冷效应. 物理学报, 1998, 47(8): 1397-1403. doi: 10.7498/aps.47.1397
    [19] 刘楣, 刘卫, 曹恕, 邢定钰. 微波电场下的热电子温差电势率. 物理学报, 1995, 44(12): 1977-1983. doi: 10.7498/aps.44.1977
    [20] 陈茂康. 较差脈流发电器. 物理学报, 1935, 1(3): 68-78. doi: 10.7498/aps.1.68
计量
  • 文章访问数:  5540
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-06-29
  • 上网日期:  2021-10-19
  • 刊出日期:  2021-11-05

/

返回文章
返回