搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析

郑斯文 刘亚卓 罗晓玲 王丽辉 张娜 张晶晶 金传洋 徐丙立 屈强 陈玲

引用本文:
Citation:

三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析

郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲

Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss

Zheng Si-Wen, Liu Ya-Zhuo, Luo Xiao-Ling, Wang Li-Hui, Zhang Na, Zhang Jing-Jing, Jin Chuan-Yang, Xu Bing-Li, Qu Qiang, Chen Ling
PDF
HTML
导出引用
  • 研究并分析了一种采用三层芯结构的单模大模场面积低弯曲损耗光纤. 纤芯由纤芯高折射率层、包层低折射率层和下陷低折射率层三层结构构成. 系统地分析了三层芯光纤(three-layer-core fiber, TLF)中不同结构参数对基模模场面积及弯曲损耗的影响. 研究表明, 通过调整三层芯的结构参数, 在不牺牲截止波长的前提下, 这种TLF可以实现在增大基模有效面积(Aeff)的同时, 将弯曲损耗降到更低. 通过调整纤芯中三层芯的结构参量, Aeff可以达到100—330 μm2甚至更高. 此外, 在相同模场面积Aeff下, 三层芯光纤的弯曲损耗可以比普通阶跃型光纤(SIF)要低2—4个数量级. 分析表明这种大有效面积、低弯曲损耗三层芯单模光纤在宽带大容量传输、及大功率光纤激光器和放大器中具有重要的潜在应用价值.
    A three-layer-core single-mode large-mode-area fiber with low bending loss is investigated in this paper. The three-layer structure in the core which is comprised of core-index layer, cladding-index layer and depression-index layer, can achieve large-effective-area Aeff while maintaining low-bending-loss without deteriorating cutoff behaviors. The large-mode-area of 100–330 μm2 can be achieved in the fiber. The effective area Aeff can be further enlarged by adjusting the layer parameters. Furthermore, the bending property can be improved in this three-layer-core structure. The bending loss can decrease by 2–4 orders of magnitude compared with the bending loss of the conventional step-index fiber with the same Aeff. These characteristics of three-layer-core fiber suggest that it can be used in large-mode-area wide-bandwidth high-capacity transmission, or high-power optical fiber laser and amplifier in the optical communications, which can be conducive to studying the basic physical layer structure of big data storage, reading, calculation and transmission applications and so on.
      Corresponding author: Zheng Si-Wen, zhengsiwen010@163.com
    [1]

    Cai J, Cai Y, Davidson C, Lucero A, Zhang H, Foursa D, Sinkin O, Patterson W, Pilipetskii A, Mohs G, Bergano N 2011 National Fiber Optic Engineers Conference (NFOEC) Los Angeles, California, March 6, 2011 pPDPB4

    [2]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2010 Optical Fiber Communication Conference (OFC) San Diego, California, March 21, 2010 pPDPB7

    [3]

    Qian D, Huang M, Ip E, Huang Y, Shao Y, Hu J, Wang T 2011 Optical Fiber Communication Conference (OFC) Los Angeles, California, March 6, 2011 pPDPB5

    [4]

    Dong L, Wu T W, Mckay H A, Fu L, Li J, Winful H G 2009 IEEE J. Sel. Top. Quantum Electron. 15 1Google Scholar

    [5]

    Dussardier B, Rastogi V, Kumar A, Monnom G 2011 Appl. Opt. 50 19Google Scholar

    [6]

    Jain D, Baskiotis C, Sahu J K 2013 Opt. Express 21 2

    [7]

    Fini J M 2006 Opt. Express 14 1Google Scholar

    [8]

    Lees G P, Taverner D, Richardson D J, Dong L, Newson T P 1997 Electron. Lett. 33 5Google Scholar

    [9]

    Li M J, Tandon P, Bickham S R, McDermott M A, Desorcie R B, Nolan D A, Johnson J J, Lewis K A, Englebert J J 2009 J. Lightwave Technol. 27 3Google Scholar

    [10]

    Watekar P R, Ju S, Han W T 2009 Opt. Express 17 12

    [11]

    Watekar P R, Ju S, Han W T 2011 Appl. Opt. 50 25Google Scholar

    [12]

    Takenaga K, Arakawa Y, Sasaki Y, Tanigawa S, Matsuo S, Saitoh K, Koshiba M 2011 Opt. Express 19 26Google Scholar

    [13]

    Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 IEEE Photon. Technol. Lett. 24 21

    [14]

    Simovic A, Savovic S, Drljaca B, Djordjevich A 2014 Opt. Laser Technol. 57

    [15]

    Kumar A, Rastogi V 2011 Applied Optics 50 25

    [16]

    吴重庆 2005 光波导理论第二版(北京: 清华大学出版社)

    Wu C Q 2015 Theoretical Basis of Optical Waveguide (2nd Ed.) (Beijing: Tsinghua University Press) (in Chinese)

    [17]

    林桢 2014博士学位论文 (北京: 北京交通大学)

    Lin Z 2014 P. h. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [18]

    方宏, 娄淑琴, 任国斌, 郭铁英, 简水生 2006 中国激光 33 493Google Scholar

    Fang H, Lou S Q, Ren G B, Guo T Y, Jian S S 2006 Chin. J. Lasers 33 493Google Scholar

    [19]

    Birks T A, Knight J C, St P, Russell J 1997 Opt. Lett. 22 13Google Scholar

    [20]

    Petermann K 1977 Opt. and Quant Electron. 9 2

    [21]

    Petermann K 1983 Electron. Lett. 19 18Google Scholar

    [22]

    李春生, 李琳莹, 杨世信, 甘露, 宋志佗, 李雪松 2013 现代传输 2 72Google Scholar

    Li C S, Li L Y, Yang S X, Gan L, Song Z T, Li X S 2013 Mearments Standard 2 72Google Scholar

    [23]

    Baggett J C, Monro T M, Furusawa K, Finazzi V, Richardson D J 2003 Optics Commun. 227 4

    [24]

    Dutt A, Mahapatra S, Varshney S K 2011 J. Opt. Soc. Am. B 28 6

    [25]

    Ulrich R, Rashleigh S C, Eickhoff W 1980 Opt. Lett. 5 6

    [26]

    Jeunhomme L B 1989 Single-Mode Fiber Optics 2 nd ed. (New York: Marcel Dekker)

    [27]

    Matsuo S, Ikeda M, Kutami H, Himeno K 2005 IEICE Trans. Electron. E88-C5

  • 图 1  TLF的横截面结构及折射率分布图

    Fig. 1.  Cross section schematic and refractive index profile of TLF structure.

    图 2  截止波长λC随不同层结构参数 (a)c、(b) b和 (c) Δ2的变化关系

    Fig. 2.  Cutoff wavelength λC as a function of the layer parameters: (a) c; (b) b; (c) Δ2.

    图 3  截止波长λC随不同层结构参数 (a)bc、(b) bΔ2、(c) Δ2c的变化关系

    Fig. 3.  Cutoff wavelength λC as a function of the layer parameters: (a) b and c, (b) b and Δ2, (c) Δ2 and c.

    图 4  纤芯高折层半径a随不同层结构参数 (a)c、(b) b和(c) Δ2的变化曲线

    Fig. 4.  Relationship between core radius a and (a) c, (b) b, and (c) Δ2.

    图 5  Aeff随不同层结构参数 (a) c、(b) b和 (c) Δ2的变化曲线

    Fig. 5.  Relationship between Aeff and (a) c, (b) b, and (c) Δ2

    图 6  Aeff随不同层结构参数 (a) bc、(b) bΔ2和 (c) Δ2c的变化关系

    Fig. 6.  Relationship between Aeff and (a) b and c, (b)b and Δ2, and (c) Δ2 and c.

    图 7  不同层结构参数 (a) c、(b) b和 (d) Δ2下弯曲损耗随弯曲半径R的变化曲线; (c)弯曲半径R = 0.01 m时弯曲损耗随b的变化曲线

    Fig. 7.  Relationship between the bending lossand (a) c, (b) b, and (d) Δ2 at various R; (c) relationship between the bending lossand b at R = 0.01 m.

    图 8  TLF和SIF光纤结构的基模弯曲损耗随Aeff的变化曲线

    Fig. 8.  Bending loss as a function of Aeff for TLFs comparedto step-index fiber.

    图 9  不同弯曲半径R下 (a)弯曲损耗、(b) Aeff的变化曲线

    Fig. 9.  Relationship between (a) bending loss, (b) effective area Aeff and bending radius. R.

    图 10  TLF基模的限制损耗随波长的变化曲线

    Fig. 10.  Transmission loss of fundamentalmode for TLFs.

  • [1]

    Cai J, Cai Y, Davidson C, Lucero A, Zhang H, Foursa D, Sinkin O, Patterson W, Pilipetskii A, Mohs G, Bergano N 2011 National Fiber Optic Engineers Conference (NFOEC) Los Angeles, California, March 6, 2011 pPDPB4

    [2]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2010 Optical Fiber Communication Conference (OFC) San Diego, California, March 21, 2010 pPDPB7

    [3]

    Qian D, Huang M, Ip E, Huang Y, Shao Y, Hu J, Wang T 2011 Optical Fiber Communication Conference (OFC) Los Angeles, California, March 6, 2011 pPDPB5

    [4]

    Dong L, Wu T W, Mckay H A, Fu L, Li J, Winful H G 2009 IEEE J. Sel. Top. Quantum Electron. 15 1Google Scholar

    [5]

    Dussardier B, Rastogi V, Kumar A, Monnom G 2011 Appl. Opt. 50 19Google Scholar

    [6]

    Jain D, Baskiotis C, Sahu J K 2013 Opt. Express 21 2

    [7]

    Fini J M 2006 Opt. Express 14 1Google Scholar

    [8]

    Lees G P, Taverner D, Richardson D J, Dong L, Newson T P 1997 Electron. Lett. 33 5Google Scholar

    [9]

    Li M J, Tandon P, Bickham S R, McDermott M A, Desorcie R B, Nolan D A, Johnson J J, Lewis K A, Englebert J J 2009 J. Lightwave Technol. 27 3Google Scholar

    [10]

    Watekar P R, Ju S, Han W T 2009 Opt. Express 17 12

    [11]

    Watekar P R, Ju S, Han W T 2011 Appl. Opt. 50 25Google Scholar

    [12]

    Takenaga K, Arakawa Y, Sasaki Y, Tanigawa S, Matsuo S, Saitoh K, Koshiba M 2011 Opt. Express 19 26Google Scholar

    [13]

    Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 IEEE Photon. Technol. Lett. 24 21

    [14]

    Simovic A, Savovic S, Drljaca B, Djordjevich A 2014 Opt. Laser Technol. 57

    [15]

    Kumar A, Rastogi V 2011 Applied Optics 50 25

    [16]

    吴重庆 2005 光波导理论第二版(北京: 清华大学出版社)

    Wu C Q 2015 Theoretical Basis of Optical Waveguide (2nd Ed.) (Beijing: Tsinghua University Press) (in Chinese)

    [17]

    林桢 2014博士学位论文 (北京: 北京交通大学)

    Lin Z 2014 P. h. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [18]

    方宏, 娄淑琴, 任国斌, 郭铁英, 简水生 2006 中国激光 33 493Google Scholar

    Fang H, Lou S Q, Ren G B, Guo T Y, Jian S S 2006 Chin. J. Lasers 33 493Google Scholar

    [19]

    Birks T A, Knight J C, St P, Russell J 1997 Opt. Lett. 22 13Google Scholar

    [20]

    Petermann K 1977 Opt. and Quant Electron. 9 2

    [21]

    Petermann K 1983 Electron. Lett. 19 18Google Scholar

    [22]

    李春生, 李琳莹, 杨世信, 甘露, 宋志佗, 李雪松 2013 现代传输 2 72Google Scholar

    Li C S, Li L Y, Yang S X, Gan L, Song Z T, Li X S 2013 Mearments Standard 2 72Google Scholar

    [23]

    Baggett J C, Monro T M, Furusawa K, Finazzi V, Richardson D J 2003 Optics Commun. 227 4

    [24]

    Dutt A, Mahapatra S, Varshney S K 2011 J. Opt. Soc. Am. B 28 6

    [25]

    Ulrich R, Rashleigh S C, Eickhoff W 1980 Opt. Lett. 5 6

    [26]

    Jeunhomme L B 1989 Single-Mode Fiber Optics 2 nd ed. (New York: Marcel Dekker)

    [27]

    Matsuo S, Ikeda M, Kutami H, Himeno K 2005 IEICE Trans. Electron. E88-C5

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 马丽伶, 李曙光, 李建设, 孟潇剑, 李增辉, 王璐瑶, 邵朋帅. 一种具有低串扰抗弯曲的单沟槽十九芯单模异质光纤. 物理学报, 2022, 71(10): 104206. doi: 10.7498/aps.71.20212221
    [3] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计. 物理学报, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [4] 魏伟华, 李木天, 刘墨南. 基于飞秒激光直写的单向单模耦合微腔. 物理学报, 2018, 67(6): 064203. doi: 10.7498/aps.67.20172395
    [5] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [6] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析. 物理学报, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [7] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [8] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [9] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究. 物理学报, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [10] 盛新志, 娄淑琴, 尹国路, 鹿文亮, 王鑫. 一种与标准单模光纤高适配的低弯曲损耗光子晶体光纤. 物理学报, 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [11] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析. 物理学报, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [12] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [13] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [14] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [15] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [16] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析. 物理学报, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [17] 柏宁丰, 洪玮, 孙小菡. 复合缺陷型电磁帯隙谐振腔. 物理学报, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [18] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计. 物理学报, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [19] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [20] 王忠纯. 介观耗散传输线的量子化. 物理学报, 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
计量
  • 文章访问数:  4437
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-06-21
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回