搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双端泵浦Nd3+掺杂MgO:LiNbO3正交偏振双波长连续激光调控

刘鸿志 王宇恒 郑浩 赵云峰 于永吉 金光勇

引用本文:
Citation:

双端泵浦Nd3+掺杂MgO:LiNbO3正交偏振双波长连续激光调控

刘鸿志, 王宇恒, 郑浩, 赵云峰, 于永吉, 金光勇

Regulation of orthogonally polarized dual­wavelength continuous wave laser based on double-end pumped Nd3+ doped MgO:LiNbO3

Liu Hong-Zhi, Wang Yu-Heng, Zheng Hao, Zhao Yun-Feng, Yu Yong-Ji, Jin Guang-Yong
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 报道了一种采用双端泵浦的Nd3+离子掺杂MgO:LiNbO3正交偏振双波长激光器, 并对正交偏振双波长激光输出进行调控. 基于晶体的偏振荧光光谱, 对1084与1093 nm的双波长激光振荡机理进行分析, 建立晶体热透镜焦距与受激发射截面比之间的关系, 并推导出1084及1093 nm双波长共振区间, 给出通过改变谐振腔腔型结构调控双波长激光输出的方法. 在实验中采用813 nm的半导体激光器双端泵浦a切的Nd:MgO:LiNbO3晶体, 测量了1084与1093 nm两种波长的输出规律, 并对输出波长进行调控. 最终得到了6.02 W的1093 nm和3.02 W的1084 nm单波长激光输出, 在X, Y方向上的光束质量分别为$ M_X^2 $ = 1.70和$ M_Y^2 $ = 1.81. 在28 W泵浦注入功率下获得了4.58 W的双波长激光输出, 实验结果与理论分析相符合. 为正交偏振双波长的可控输出及应用奠定了理论和实验基础.
    In this paper, an orthogonally polarized dual-wavelength laser based on dual-end pumped Nd3+ doped MgO:LiNbO3 is reported. Besides, the output wavelength of the orthogonally polarized dual-wavelength is regulated. According to the crystal character, the polarized fluorescence spectrum of the crystal is chosen as the starting point. The oscillation mechanism of the dual-wavelength Nd3+ doped MgO:LiNbO3 laser at 1084 nm and 1093 nm is analyzed theoretically. The relationship between the focal length of the crystal thermal lens and the stimulated emission cross-sectional ratio is established, and the effects of different temperatures on the output of single-wavelength Nd3+ doped MgO:LiNbO3 laser and on the output of dual-wavelength Nd3+ doped MgO:LiNbO3 laser are analyzed. In addition, The single-wavelength output region of 1084 nm and 1093 nm are derived respectively, and the mixed dual-wavelength working area at 1084 nm and 1093 nm are also given. The influences of different resonator parameters on the output dual-wavelength Nd3+ doped MgO:LiNbO3 laser are analyzed. It is worth mentioning that a method of adjusting the output of dual-wavelength laser by changing the resonant cavity structure is given. In the experiment, a-cut Nd:MgO:LiNbO3 crystal is double-end pumped by an semiconductor laser, of which the output wavelength is 813 nm. The output law of the two wavelengths of 1084 nm and 1093 nm is summarized. The output wavelength is regulated. When the laser cavity is not inserted by other optical elements, the maximum output power of 4.58 W at 1084 nm/1093 nm dual-wavelength laser under the pump power is 28 W and the pure single-wavelength laser maximum output power of 3.02 W at 1084 nm and 6.02 W at 1093 nm are obtained. The beam quality factor in the X- and Y-direction are $ M_X^2 $ = 1.70 and $ M_Y^2 $ = 1.81, respectively. The experimental results are in agreement with the theoretical analysis results. According to the change of the resonator parameters, the 1084 nm and 1093 nm pure single-wavelength laser alternate output and orthogonal polarization dual-wavelength laser synchronous output are achieved based on the Nd3+ doped MgO:LiNbO3 laser, thus establishing a theoretical and experimental foundation for the controllable output and application of orthogonal polarization dual-wavelength. It greatly expand the application range of dual-wavelength laser which can control the orthogonal polarization of 1084/1093 nm.
      通信作者: 于永吉, yyjcust@163.com
    • 基金项目: 国家自然科学基金(批准号: 11974060, U20A20214)和吉林省科技厅中青年科技创新领军人才及团队项目(批准号: 20190101004JH)资助的课题
      Corresponding author: Yu Yong-Ji, yyjcust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974060, U20A20214) and the Young and Middle-aged Scientific and Technological Innovation Leaders and Team Project of Jilin Provincial Department of Science and Technology, China (Grant No. 20190101004JH)
    [1]

    Walsh B M 2010 Laser Phys. 20 622Google Scholar

    [2]

    Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 20 689Google Scholar

    [3]

    Cheng H P, Liu Y C, Huang T L, Liang H C, Chen Y F 2018 Photonics Res. 6 815Google Scholar

    [4]

    Duan X M, Li L J, Shen Y J, Yao B Q, Wang Y Z 2018 Appl. Opt. 57 8102Google Scholar

    [5]

    Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296Google Scholar

    [6]

    Liang H C, Wu C S 2017 Opt. Express 26 13697Google Scholar

    [7]

    Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar

    [8]

    Xu B, Wang Y, Lin Z L, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar

    [9]

    刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 物理学报 57 230Google Scholar

    Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230Google Scholar

    [10]

    Lu Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar

    [11]

    Thévenin J, Vallet M, Brunel M 2012 Opt. Lett. 37 2859Google Scholar

    [12]

    Tuan P H, Tsai M C, Chen Y F 2017 Opt. Express 25 29000Google Scholar

    [13]

    Tu Z H, Dai S B, Yin H, Zhu S Q 2019 Opt. Express 27 32949Google Scholar

    [14]

    Qi J, Liu C, Dai C, Liu L, Wang X Z 2019 Laser Phys. 29 115001Google Scholar

    [15]

    Fan M Q, Li T, Zhao S Z, Li G Q, Li D C, Yang K J, Qiao W C, Li S X 2016 Opt. Mater. 53 209Google Scholar

    [16]

    Wang Y H, Yu Y J, Sun D H, Liu H, Liu H Y, Li S T, Wu C T, Jin G Y 2019 Opt. Laser Technol. 119 105570Google Scholar

    [17]

    Cordova-Plaza A, Fan T Y, Digonnet M J F, Byer R L, Shaw H J 1988 Opt. Lett. 13 209Google Scholar

    [18]

    Burlot R, Moncorgé R, Manaa H, Boulon G, Guyot Y, Garcia Solé J, Cochet-Muchy D 1996 Opt. Mater. 6 313Google Scholar

    [19]

    De Almeida José M M M, Leite António M P P, Amin J 2000 Proc. SPIE 3942 232Google Scholar

    [20]

    Cox L J 1977 Opt. Acta Int. J. Opt. 24 995Google Scholar

    [21]

    赫光生, 刘凤兰, 朱大庆 1978 激光 5 6Google Scholar

    He G S, Liu F L, Zhu D Q 1978 Chin. J. Lasers 5 6Google Scholar

  • 图 1  Nd:MgO:LiNbO3 (Nd:MgO:LN)激光器的激光实验装置图

    Fig. 1.  Diagram of laser experimental setup based on Nd:MgO:LiNbO3 laser.

    图 2  Nd:MgO:LiNbO3晶体的偏振荧光光谱

    Fig. 2.  Polarized fluorescence spectra of Nd:MgO:LiNbO3 crystal.

    图 3  晶体热焦距和受激发射截面比($ \sigma_{1093} $/$ \sigma _{1084}$)

    Fig. 3.  Ratio of crystal thermal focal length to stimulated emission cross section ($ \sigma_{1093} $/$ \sigma_{1084} $).

    图 4  腔长70 mm、输出镜曲率R = 300 mm时的双波长共振区间

    Fig. 4.  Dual-wavelength resonance range when the cavity length is 70 mm and the output mirror curvature R = 300 mm

    图 5  腔长100 mm、输出镜曲率R = 300 mm时的双波长共振区间

    Fig. 5.  Dual-wavelength resonance range when the cavity length is 100 mm and the output mirror curvature R = 300 mm.

    图 6  腔长100 mm、输出镜曲率R = 150 mm时的双波长共振区间

    Fig. 6.  Dual-wavelength resonance range when the cavity length is 100 mm and the output mirror curvature R = 150 mm.

    图 7  不同透过率下, 谐振腔1的激光输出功率特性

    Fig. 7.  Resonator cavity 1 laser output power characteristics.

    图 8  谐振腔1的1084与1093 nm双波长激光输出的变化过程与光谱

    Fig. 8.  Change process and spectrum of 1084 and 1093 nm dual-wavelength laser output for resonator cavity 1.

    图 9  1084和1093 nm激光波长的偏振态 (a) 1084 nm偏振态; (b) 1093 nm偏振态

    Fig. 9.  Polarization states of 1084 and 1093 nm laser wavelengths: (a) Polarization states of 1084 nm; (b) polarization states of 1093 nm.

    图 10  谐振腔2激光输出功率特性

    Fig. 10.  Resonator cavity 2 laser output power characteristics

    图 11  谐振腔3激光输出功率特性

    Fig. 11.  Resonator cavity 3 laser output power characteristics

    图 12  1084 nm和1093 nm光斑及拟合得到的光束质量 (a) 1084 nm; (b) 1093 nm

    Fig. 12.  1084 nm and 1093 nm spots and the beam quality obtained by fitting: (a) 1084 nm; (b) 1093 nm.

    表 1  谐振腔模拟参数

    Table 1.  Parameters of cavity simulation.

    编号M1曲率M2曲率/mm谐振腔长度/mm
    130070
    2300100
    3150100
    下载: 导出CSV

    表 2  Nd:MgO:LiNbO3晶体的正交偏振双波长激光器镀膜参数

    Table 2.  Coating parameters of orthogonal polarization dual-wavelength laser based on Nd:MgO:LiNbO3 crystal.

    编号材质膜系参数
    M1K91084 nm@HR, 813 nm@HT
    M2K91084 nm@AR (T = 6%, 10%, 15%)
    BS1K945° 1084 nm@HR, 813 nm@HT
    PK91080—1090 nm 45°偏振膜
    注: HR代表高反射率, HT代表高透射率.
    下载: 导出CSV
  • [1]

    Walsh B M 2010 Laser Phys. 20 622Google Scholar

    [2]

    Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 20 689Google Scholar

    [3]

    Cheng H P, Liu Y C, Huang T L, Liang H C, Chen Y F 2018 Photonics Res. 6 815Google Scholar

    [4]

    Duan X M, Li L J, Shen Y J, Yao B Q, Wang Y Z 2018 Appl. Opt. 57 8102Google Scholar

    [5]

    Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296Google Scholar

    [6]

    Liang H C, Wu C S 2017 Opt. Express 26 13697Google Scholar

    [7]

    Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar

    [8]

    Xu B, Wang Y, Lin Z L, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar

    [9]

    刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 物理学报 57 230Google Scholar

    Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230Google Scholar

    [10]

    Lu Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar

    [11]

    Thévenin J, Vallet M, Brunel M 2012 Opt. Lett. 37 2859Google Scholar

    [12]

    Tuan P H, Tsai M C, Chen Y F 2017 Opt. Express 25 29000Google Scholar

    [13]

    Tu Z H, Dai S B, Yin H, Zhu S Q 2019 Opt. Express 27 32949Google Scholar

    [14]

    Qi J, Liu C, Dai C, Liu L, Wang X Z 2019 Laser Phys. 29 115001Google Scholar

    [15]

    Fan M Q, Li T, Zhao S Z, Li G Q, Li D C, Yang K J, Qiao W C, Li S X 2016 Opt. Mater. 53 209Google Scholar

    [16]

    Wang Y H, Yu Y J, Sun D H, Liu H, Liu H Y, Li S T, Wu C T, Jin G Y 2019 Opt. Laser Technol. 119 105570Google Scholar

    [17]

    Cordova-Plaza A, Fan T Y, Digonnet M J F, Byer R L, Shaw H J 1988 Opt. Lett. 13 209Google Scholar

    [18]

    Burlot R, Moncorgé R, Manaa H, Boulon G, Guyot Y, Garcia Solé J, Cochet-Muchy D 1996 Opt. Mater. 6 313Google Scholar

    [19]

    De Almeida José M M M, Leite António M P P, Amin J 2000 Proc. SPIE 3942 232Google Scholar

    [20]

    Cox L J 1977 Opt. Acta Int. J. Opt. 24 995Google Scholar

    [21]

    赫光生, 刘凤兰, 朱大庆 1978 激光 5 6Google Scholar

    He G S, Liu F L, Zhu D Q 1978 Chin. J. Lasers 5 6Google Scholar

  • [1] 黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁, 杜艳君. 扫描波长调制光谱高精度复现分子吸收率函数方法研究. 物理学报, 2025, 74(6): . doi: 10.7498/aps.74.20241468
    [2] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [3] 樊莉, 向柯赟, 沈君, 朱骏. 高峰值功率Nd:YLF/BaWO4正交偏振双波长拉曼激光器. 物理学报, 2022, 71(9): 094203. doi: 10.7498/aps.71.20211727
    [4] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211772
    [5] 王振, 杜艳君, 丁艳军, 彭志敏. 基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定. 物理学报, 2020, 69(6): 064204. doi: 10.7498/aps.69.20191865
    [6] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [8] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性. 物理学报, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [9] 张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏. 基于波长调制光谱技术的线宽测量理论及其应用研究. 物理学报, 2015, 64(5): 053301. doi: 10.7498/aps.64.053301
    [10] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [11] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [12] 张进, 周新星, 罗海陆, 文双春. 涡旋光束在反射中的正交偏振特性研究. 物理学报, 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [13] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [14] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [15] 朱启华, 周寿桓, 赵磊, 曾小明, 黄征, 周凯南, 王逍, 黄小军, 冯国英. 利用光孤子机制实现超宽范围波长调谐的理论和实验研究. 物理学报, 2011, 60(8): 084215. doi: 10.7498/aps.60.084215
    [16] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法. 物理学报, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [17] 刘 欢, 姚建铨, 郑芳华, 路 洋, 王 鹏. LD端面抽运Nd:YAG 1319/1338nm双波长激光器研究. 物理学报, 2008, 57(1): 230-237. doi: 10.7498/aps.57.230
    [18] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究. 物理学报, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [19] 林文雄, 沈鸿元. 一种新型结构的Nd∶YAlO3双波长调Q脉冲激光器. 物理学报, 1999, 48(4): 667-672. doi: 10.7498/aps.48.667
    [20] 刘思敏, 张光寅. LiNbO3:MgO晶体的喇曼光谱研究. 物理学报, 1983, 32(1): 103-107. doi: 10.7498/aps.32.103
计量
  • 文章访问数:  4882
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-05
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回