搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂毒肽与单组分脂膜相互作用的单分子研究

王康 徐成 吴晋锋 杨恺 元冰

引用本文:
Citation:

蜂毒肽与单组分脂膜相互作用的单分子研究

王康, 徐成, 吴晋锋, 杨恺, 元冰

Single-molecule study of interaction between melittin and one-component lipid membrane

Wang Kang, Xu Cheng, Wu Jin-Feng, Yang Kai, Yuan Bing
PDF
HTML
导出引用
  • 近年来, 单分子追踪技术的出现和发展为研究细胞膜界面生物学过程提供了一条新的途径, 然而细胞膜内生物分子运动的异质性特征使得从大量分子轨迹中区分和分离不同的分子运动模式变得非常困难, 迫切需要发展简单易行的分析方法. 本文以蜂毒肽和单组分平板支撑脂膜的相互作用体系为例, 发展了一种利用单分子运动位移标准差的频数分布来区分和分离不同运动模式脂分子的数据分析方法, 提供了比传统基于位移或回旋半径频数分布的分析方法更高的准确度和更多的定量信息. 利用该方法成功分离得到了脂分子在平板膜内的快慢两种运动状态, 并发现其分布情况部分相符于脂分子在上下叶的位置分布; 在不同浓度蜂毒肽的表面吸附或跨膜成孔作用的影响下, 这两部分脂分子的运动受到了不同的干扰. 本文针对生物膜体系内分子运动的复杂异质性特征发展了一种实现分子运动模式分离的数据分析方法, 并利用此方法获得了蜂毒肽破膜成孔的不同阶段对脂膜上下叶的不同影响. 该方法的开发将对利用单分子追踪技术研究生物体系动力学过程有重要帮助.
    In recent years, the emergence and development of single-molecule tracking technology has provided a new way to study the biological process in a cell membrane. However, the heterogeneity of biomolecular motions in cell membranes makes it difficult to distinguish and separate different molecular motion patterns from a large number of molecular trajectories. In this work, taking the system of interaction between melittin and a single-component supported phospholipid bilayer (SLB) membrane as an example, a type of data analysis method is developed through using the frequency distribution of standard deviations of single molecular motion displacements to distinguish and separate lipid molecules in different motion modes. It provides higher accuracy and more quantitative information than traditional analysis methods based on the frequency distribution of displacement or radius of gyration. By using this method, we successfully separate the two moving states of lipids in the SLB, and find that such a distribution is partly consistent with the location distribution of lipids in the upper leaflet and lower leaflet. Under the influence of surface adsorption or transmembrane poration of melittin at different concentrations, the movements of these two types of lipids are disturbed in different ways. In this work, a data analysis method for the separation of molecular motion patterns is developed according to the complex heterogeneity of molecular motions in a phospholipid membrane system. The different effects on the upper leaflet and lower leaflet of a lipid membrane due to melittin actions at different stages are obtained. The method developed in this work will be of great help in studying the dynamic processes of biological systems by using single-molecule tracking technology.
      通信作者: 杨恺, yangkai@suda.edu.cn ; 元冰, yuanbing@suda.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 21774092, U1532108, U1932121)资助的课题
      Corresponding author: Yang Kai, yangkai@suda.edu.cn ; Yuan Bing, yuanbing@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21774092, U1532108, U1932121)
    [1]

    Wimley W C 2010 ACS Chem. Biol. 5 905Google Scholar

    [2]

    Deng Z X, Li J L, Yuan B, Yang K 2019 Commun. Theor. Phys. 71 887Google Scholar

    [3]

    Yang L, Harroun T A, Weiss T M, Ding L, Huang H W 2001 Biophys. J. 81 1475Google Scholar

    [4]

    Wiedman G, Fuselier T, He J, Searson P C, Hristova K, Wimley W C 2014 J. Am. Chem. Soc. 136 4724Google Scholar

    [5]

    Liu J J, Xiao S F, Li J L, Yuan B, Yang K, Ma Y Q 2018 Biochim. Biophys. Acta, Biomembr. 1860 2234Google Scholar

    [6]

    Lee M T, Sun T L, Hung W C, Huang H W 2013 Proc. Natl. Acad. Sci. U. S. A. 110 14243Google Scholar

    [7]

    Norregaard K, Metzler R, Ritter C M, Berg-Sorensen K, Oddershede L B 2017 Chem. Rev. 117 4342Google Scholar

    [8]

    Shen H, Tauzin L J, Baiyasi R, Wang W X, Moringo N, Shuang B, Landes C F 2017 Chem. Rev. 117 7331Google Scholar

    [9]

    von Diezmann A, Shechtman Y, Moerner W E 2017 Chem. Rev. 117 7244Google Scholar

    [10]

    Xu C, Ma W D, Wang K, He K J, Chen Z L, Liu J J, Yang K, Yuan B 2020 J. Phys. Chem. Lett. 11 4834Google Scholar

    [11]

    He W, Song H, Su Y, Geng L, Ackerson B J, Peng H B, Tong P 2016 Nat. Commun. 7 11701Google Scholar

    [12]

    Golan Y, Sherman E 2017 Nat. Commun. 8 15851Google Scholar

    [13]

    Metzler R, Jeon J H, Cherstvy A G 2016 Biochim. Biophys. Acta, Biomembr. 1858 2451Google Scholar

    [14]

    Zwang T J, Fletcher W R, Lane T J, Johal M S 2010 Langmuir 26 4598Google Scholar

    [15]

    Krapf D, Campagnola G, Nepal K, Peersen O B 2016 Phys. Chem. Chem. Phys. 18 12633Google Scholar

    [16]

    Chen K J, Wang B, Guan J, Granick S 2013 ACS Nano 7 8634Google Scholar

    [17]

    Schoch R L, Barel I, Brown F L H, Haran G 2018 J. Chem. Phys. 148 123333Google Scholar

    [18]

    Xue C D, Shi X H, Tian Y, Zheng X, Hu G Q 2020 Nano Lett. 20 3895Google Scholar

    [19]

    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A 2002 J. Cell Biol. 157 1071Google Scholar

    [20]

    Jeon J H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sorensen K, Oddershede L, Metzler R 2011 Phys. Rev. Lett. 106 048103Google Scholar

    [21]

    Lubelski A, Sokolov I M, Klafter J 2008 Phys. Rev. Lett. 100 250602Google Scholar

    [22]

    Jeon J H, Monne H M S, Javanainen M, Metzler R 2012 Phys. Rev. Lett. 109 188103Google Scholar

    [23]

    Burov S, Jeon J H, Metzler R, Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800Google Scholar

  • 图 1  利用传统的位移和回旋半径PDF进行轨迹分析 (a) 轨迹的位移频数分布情况, 包括两类原始轨迹$ T(\sigma = 1) $, $ T(\sigma = 1. 25) $和二者混合之后的轨迹$ {T}_{\rm{mixed}} $; (b) 三类轨迹的回旋半径频数分布情况

    Fig. 1.  Conventional PDF analysis of the displacement and $ {R}_{\rm{g}} $ of trajectories: (a) Displacement PDF of the trajectories before mixing ($ T(\sigma = 1) $, $ T(\sigma = 1. 25) $) and after mixing ($ {T}_{\rm{mixed}} $); (b) $ {R}_{\rm{g}} $ PDF of the three conditions.

    图 2  利用Dstd频数分布进行轨迹分析举例 (a)$ {T}_{\rm{mixed}}(\sigma = 1, 1. 25) $; (b)$ {T}_{\rm{mixed}}\left(\sigma = 1, 1. 5\right); $ (c)$ {T}_{\rm{mixed}}\left(\sigma = 1, 2\right); $ (d) 三种$ {T}_{\rm{mixed}} $经过Dstd轨迹分离法处理之后所得轨迹数量的准确率

    Fig. 2.  Typical examples showing trajectory analysis based on the PDF of Dstd: (a)$ {T}_{\rm{mixed}}\left(\sigma = 1, 1. 25\right); $ (b)$ {T}_{\rm{mixed}}\left(\sigma = 1, 1. 5\right); $ (c)$ {T}_{\rm{mixed}}\left(\sigma = 1, 2\right); $ (d) accuracy of the seperation shown in Fig. (a) (c).

    图 3  DOPC支撑脂双层膜内磷脂分子运动轨迹的Dstd的频数分布分析 (a), (b) 典型的单个磷脂分子时间序列荧光成像照片(拍摄速率30 frames/s)及运动轨迹(总时长4.38 s). (c)—(e) 原始以及加入荧光淬灭剂之后的脂膜: (c)示意图; (d)分子轨迹Dstd频数分布情况; (e) $ {T}_{\rm{slow}} $$ {T}_{\rm{fast}} $比例柱状图. 图(c)中红色为荧光脂分子, 蓝色为无荧光脂分子

    Fig. 3.  PDF of Dstd of the lipid trajectories in a DOPC SLB before or after fluorescence quenching: (a), (b) Representative lipid molecule in a pristine membrane, its time-serial images (at 30 frames/s) and trajectory (with a time duration of 4.38 s); (c)−(e) schematic diagram, PDF of Dstd, and percentage histogram of the $ {T}_{\rm{slow}} $ and $ {T}_{\rm{fast}} $, of the membrane before and after outer-leaflet fluorescence quenching.

    图 A2  原始脂膜内脂分子运动行为的回旋半径PDF分析 (a) 不同步长下的 ${R_{\rm{g}}}$频数分布以及相应的阈值; (b) 分别以${R_{\rm{g}}}$${D_{\rm{std}}}$为标准分离轨迹得到的${T_{\rm{slow}}}$占比柱状图; (c) 纯DOPC脂膜中磷脂分子运动轨迹的回旋半径以及位移标准差之间的关系, 其中黑色线为拟合曲线, 二者呈现正相关

    Fig. A2.  PDF analysis of ${R_{\rm{g}}}$ for the lipids in a pristine membrane: (a) PDF of ${R_{\rm{g}}}$ acquried with different step values (Step = 0.1, 0.2 or 0.3). Dashed lines show determination of the threshold value separating the trajectories. (b) Percentage of ${T_{\rm{slow}}}$ obtained by ${R_{\rm{g}}}$ or ${D_{\rm{std}}}$ analysis. (c) Relationship between ${R_{\rm{g}}}$ and ${D_{\rm{std}}}$ for a pure DOPC bilayer.

    图 A3  不同步长的Dstd的频数分布以及相应的高斯拟合 (a) 步长为0.05; (b) 步长为0.02; (c) 步长为0.04

    Fig. A3.  PDF of Dstd by different step and corresponding Gaussian fittings: (a) step = 0.05; (b) step = 0.02; (c) step = 0.04.

    图 A4  不同浓度的蜂毒肽作用下的GUV泄露实验 (a)—(c) 分别在0.5, 5.0以及8 μg/mL的蜂毒肽的作用下的GUV泄露情况, 其中绿色通道为GUV中包裹的钙黄绿素, 红色通道代表GUV所在的轮廓; (d) 0—10 μg/mL各浓度的蜂毒肽对GUV的扰动情况; (e)浓度3 μg/mL蜂毒肽的作用下, 典型的GUV荧光泄露曲线; (f) 低浓度蜂毒肽吸附在脂膜以及高浓度蜂毒肽形成跨膜孔道的示意图

    Fig. A4.  GUV leakage experiment incubated with different concentration of melittin: (a)–(c) Confocal images of GUV leakage incubated with 0.5, 5.0 and 8 μg/mL of melittin; (d) influence on GUV by different concentration of melittin; (e) typical leakage curve of GUV incubated with 3 μg/mL; (f) sketch of absorption or poration of melittin interacted with membrane.

    图 4  蜂毒肽作用下的脂分子运动行为分析 (a), (b) 蜂毒肽影响下磷脂分子运动轨迹的Dstd频数分布, 多肽浓度为 (a) 0.5 µg/mL, (b) 5.0 µg/mL; (c), (d) 三种实验体系内$ {T}_{\rm{fast}} $$ {T}_{\rm{slow}} $的系综平均均方位移; (e) 三个体系中多肽与脂膜作用示意图

    Fig. 4.  Dstd PDF analysis of the melittin-exposed lipid membrane: (a), (b) PDF of Dstd of lipids incubated with melittin at (a) 0.5 µg/mL and (b) 5.0 µg/mL; (c), (d) EA-MSD of $ {T}_{\rm{fast}} $ and $ {T}_{\rm{slow}} $ in the three systems; (e) cartoons showing melittin-membrane interactions in the three systems.

    图 A5  分子动力学模拟中蜂毒肽影响下脂分子的扩散情况 (a) 代表性俯视截图, 显示蜂毒肽在脂膜表面的吸附; (b)脂分子的扩散图谱[10]

    Fig. A5.  Diffusion of lipids upon melittin exposure in molecular dynamics simulations: (a) Representative snapshot of melittin binding on a membrane (top view); (b) diffusion map of individual lipids[10].

    图 A1  数值模拟所得的σ = 1的四条代表轨迹

    Fig. A1.  Four typical trajectories with σ = 1 obtained from numeric simulations.

    表 1  不同浓度蜂毒肽影响下磷脂膜中磷脂分子运动Dstd频数分布的拟合结果

    Table 1.  Fittings of the Dstd PDF of lipid trajectories in membrane incubated with melittin at different concentrations.

    $ {T}_{\rm{slow}} $ $ {T}_{\rm{fast}} $阈值
    峰位半高宽占比峰位半高宽占比/%
    原始膜0.050.0621.25%0.370.1178.750.16
    0.5 μg/mL0.030.0312.09%0.360.1187.910.09
    5.0 μg/mL0.030.0312.71%0.290.0887.290.10
    下载: 导出CSV

    表 A1  正文中图2所示高斯拟合的拟和优度

    Table A1.  Goodness of the Gaussian fittings in Fig. 2 in the main text.

    R2 F-value
    σ = 1/σ = 1.25 0.99 24362.45
    σ = 1/σ = 1.5 0.99 4661.03
    σ = 1/σ = 2 0.99 5739.05
    下载: 导出CSV

    表 A2  单组分DOPC磷脂膜淬灭前后磷脂分子运动Dstd频数分布的拟合数值

    Table A2.  Fittings of the Dstd PDF of lipid trajectories in a SLB membrane before and after quenching.

    Tslow Tfast 阈值 R2 F-value
    峰位 半高宽 占比/% 峰位 半高宽 占比
    原始膜 0.05 0.06 21.25 0.37 0.11 78.75 0.16 0.98 333.21
    淬灭后 0.05 0.05 49.68 0.36 0.10 50.32 0.16 0.93 88.91
    下载: 导出CSV

    表 A4  不同浓度的蜂毒肽影响下磷脂分子运动轨迹的系综平均均方位移的扩散方程拟合结果

    Table A4.  Fittings of the EA-MSD of lipid trajectories in membrane incubated with melittin at different concentrations.

    Tslow Tfast
    D α D α
    原始膜 0.56 0.16 3.60 0.90
    0.5 μg/mL 0.01 0.70 3.30 0.90
    5.0 μg/mL 0.24 0.12 2.08 0.87
    下载: 导出CSV

    表 A3  不同浓度蜂毒肽影响下磷脂膜中磷脂分子运动Dstd频数分布的拟合数值

    Table A3.  Fittings of the Dstd PDF of lipid trajectories in membrane incubated with melittin at different concentrations.

    Tslow Tfast 阈值 R2 F-value
    峰位 半高宽 占比/% 峰位 半高宽 占比/%
    原始膜 0.05 0.06 21.25 0.37 0.11 78.75 0.16 0.98 333.21
    0.5 μg/mL 0.03 0.03 12.09 0.36 0.11 87.91 0.09 0.99 496.45
    5.0 μg/mL 0.03 0.03 12.71 0.29 0.08 87.29 0.10 0.97 216.97
    下载: 导出CSV
  • [1]

    Wimley W C 2010 ACS Chem. Biol. 5 905Google Scholar

    [2]

    Deng Z X, Li J L, Yuan B, Yang K 2019 Commun. Theor. Phys. 71 887Google Scholar

    [3]

    Yang L, Harroun T A, Weiss T M, Ding L, Huang H W 2001 Biophys. J. 81 1475Google Scholar

    [4]

    Wiedman G, Fuselier T, He J, Searson P C, Hristova K, Wimley W C 2014 J. Am. Chem. Soc. 136 4724Google Scholar

    [5]

    Liu J J, Xiao S F, Li J L, Yuan B, Yang K, Ma Y Q 2018 Biochim. Biophys. Acta, Biomembr. 1860 2234Google Scholar

    [6]

    Lee M T, Sun T L, Hung W C, Huang H W 2013 Proc. Natl. Acad. Sci. U. S. A. 110 14243Google Scholar

    [7]

    Norregaard K, Metzler R, Ritter C M, Berg-Sorensen K, Oddershede L B 2017 Chem. Rev. 117 4342Google Scholar

    [8]

    Shen H, Tauzin L J, Baiyasi R, Wang W X, Moringo N, Shuang B, Landes C F 2017 Chem. Rev. 117 7331Google Scholar

    [9]

    von Diezmann A, Shechtman Y, Moerner W E 2017 Chem. Rev. 117 7244Google Scholar

    [10]

    Xu C, Ma W D, Wang K, He K J, Chen Z L, Liu J J, Yang K, Yuan B 2020 J. Phys. Chem. Lett. 11 4834Google Scholar

    [11]

    He W, Song H, Su Y, Geng L, Ackerson B J, Peng H B, Tong P 2016 Nat. Commun. 7 11701Google Scholar

    [12]

    Golan Y, Sherman E 2017 Nat. Commun. 8 15851Google Scholar

    [13]

    Metzler R, Jeon J H, Cherstvy A G 2016 Biochim. Biophys. Acta, Biomembr. 1858 2451Google Scholar

    [14]

    Zwang T J, Fletcher W R, Lane T J, Johal M S 2010 Langmuir 26 4598Google Scholar

    [15]

    Krapf D, Campagnola G, Nepal K, Peersen O B 2016 Phys. Chem. Chem. Phys. 18 12633Google Scholar

    [16]

    Chen K J, Wang B, Guan J, Granick S 2013 ACS Nano 7 8634Google Scholar

    [17]

    Schoch R L, Barel I, Brown F L H, Haran G 2018 J. Chem. Phys. 148 123333Google Scholar

    [18]

    Xue C D, Shi X H, Tian Y, Zheng X, Hu G Q 2020 Nano Lett. 20 3895Google Scholar

    [19]

    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A 2002 J. Cell Biol. 157 1071Google Scholar

    [20]

    Jeon J H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sorensen K, Oddershede L, Metzler R 2011 Phys. Rev. Lett. 106 048103Google Scholar

    [21]

    Lubelski A, Sokolov I M, Klafter J 2008 Phys. Rev. Lett. 100 250602Google Scholar

    [22]

    Jeon J H, Monne H M S, Javanainen M, Metzler R 2012 Phys. Rev. Lett. 109 188103Google Scholar

    [23]

    Burov S, Jeon J H, Metzler R, Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [4] 徐成, 林召, 杨恺, 元冰. 蜂毒肽与二元脂膜相互作用过程的单分子运动行为. 物理学报, 2020, 69(10): 108701. doi: 10.7498/aps.69.20200166
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [7] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [9] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [10] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [11] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [12] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [13] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [14] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [15] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [16] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [17] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究. 物理学报, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  4151
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-14
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回