搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光尾场加速的自反射式全光汤姆孙散射的参数优化

叶翰晟 谷渝秋 黄文会 吴玉迟 谭放 张晓辉 王少义

引用本文:
Citation:

基于激光尾场加速的自反射式全光汤姆孙散射的参数优化

叶翰晟, 谷渝秋, 黄文会, 吴玉迟, 谭放, 张晓辉, 王少义

Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser wakefield acceleration

Ye Han-Sheng, Gu Yu-Qiu, Huang Wen-Hui, Wu Yu-Chi, Tan Fang, Zhang Xiao-Hui, Wang Shao-Yi
PDF
HTML
导出引用
  • 基于激光尾场加速的全光汤姆孙散射能够提供高质量X射线束并大大减小装置的尺寸. 与分光式相比, 自反射式的构架可以降低实验的时空同步难度, 但是由于激光尾场电子加速和汤姆孙散射过程耦合, X射线优化难度大, 目前缺乏参数优化的相关报道. 本文用数值模拟修正解析理论的方法, 定量分析了激光尾场电子加速和汤姆孙散射过程中激光和电子束的焦斑、脉宽、能量等参数变化情况, 并给出了激光在等离子体镜上的反射率, 从而实现了用解析公式计算而非数值模拟跟踪参数变化, 在保证精度的同时节约了计算时间. 另外, 利用修正后的公式优化了给定激光条件下的自反射式全光汤姆孙散射X射线, 通过改变等离子体密度和等离子体镜位置这两个参数给出了最优X射线亮度和光子产额, 该方法为将来结合人工智能优化控制全光汤姆孙散射光源提供了理论基础.
    All-laser-driven Thomson scattering based on laser wakefield acceleration can provide high quality X-ray and greatly reduce the source size. Compared with two-pulse setting, the self-reflecting setting can reduce the requirement for temporal and spatial synchronization in experiment. However, it is difficult to optimize X-ray because Thomson scattering is coupled with laser wakefield acceleration in this process. In this paper, we correct theory formula through numerical simulation, and analyze the parameters quantitatively in laser wakefield acceleration and Thomson scattering, such as spot size, duration and energy of laser and electron beam, and reflectivity of plasma mirror. Then we can trace the parameters by using the modified formula rather than the numerical simulation with similar accuracy and less time. The modified formula is also used to optimize the self-reflecting all-laser-driven Thomson scattering X-ray under the given laser conditions. The optimal X-ray luminance and photon number can be obtained by changing the plasma density and the position of the plasma mirror.
      通信作者: 谷渝秋, yqgu@caep.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0401100)和科学挑战计划项目(批准号: TZ2018005)资助的课题
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401100) and the Science Challenge Project, China (Grant No. TZ2018005)
    [1]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [2]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [5]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [6]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [7]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [8]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [9]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [10]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [11]

    Sarri G, Corvan D J, Schumaker W, Cole J, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [12]

    Ta Phuoc K, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [13]

    Shaw J M, Bernstein A C, Zgadzaj R, Hannasch A, LaBerge M, Chang Y Y, Weichman K, Welch J, Henderson W, Tsai H E, Fazel N, Wang X, Ditmire T, Donovan M, Dyer G, Gaul E, Gordon J, Martinez M, Spinks M, Toncian T, Wagner C, Downer M C 2017 arXiv: 1705.08637 vl[physics.acc-ph]

    [14]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [15]

    Bruemmer T, Debus A, Pausch R, Osterhoff J, Gruener F 2020 Phys. Rev. Accel. Beams 23 031601Google Scholar

    [16]

    Fonseca R 2002 Proceedings of the Second International Conference on Computational ScienceICCS Amsterdam, Netherlands, April 21–24, 2002 p342

    [17]

    Lu W 2006 Ph. D. Dissertation (Los Angeles: University of California)

    [18]

    Chen P, Hortonsmith G, Ohgaki T 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 335 107Google Scholar

    [19]

    王广辉, 王晓方, 董克攻 2012 物理学报 61 165201Google Scholar

    Wang G H, Wang X F, Dong K G 2012 Acta Phys. Sin. 61 165201Google Scholar

    [20]

    Decker C D, Mori W B, Tzeng K C, Katsouleas T 1996 Phys. Plasmas 3 2047Google Scholar

    [21]

    Li G, Ain Q, Li S, Saeed M, Papp D, Kamperidis C, Hafz N A M 2020 Plasma Phys. Controlled Fusion 62 055004Google Scholar

    [22]

    Gotzfried J, Dopp A, Gilljohann M, Foerster M, Ding H, Schindler S, Schilling G, Buck A, Veisz L, Karsch S 2020 Phys. Rev. X 10 041015Google Scholar

    [23]

    Couperus J P, Pausch R, Kohler A, Zarini O, Kramer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [24]

    Modena Z N A, Dangor A E, Clayton C E, Marsh K A, Joshi C, MalkaV, Darrow C B, Danson C N, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [25]

    Amorim L D, Najafabadi N V 2018 Advanced Accelerator Concepts Breckenridge, Colorado, USA, August 12–17, 2018 p345

    [26]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [27]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, Tilborg J V, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [28]

    Swanson K K, Tsai H E, Barber S K, Lehe R, Mao H S, Steinke S, van Tilborg J, Nakamura K, Geddes C G R, Schroeder C B, Esarey E, Leemans W P 2017 Phys. Rev. Accel. Beams 20 051301Google Scholar

    [29]

    Thaury F Q C, Anna L, Tiberio C 2007 Nat. Phys. 3 424Google Scholar

    [30]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003Google Scholar

    [31]

    Ride S K, Esarey E, Baine M 1995 Phys. Rev. E 52 5425Google Scholar

  • 图 1  自反射全光汤姆孙散射示意图

    Fig. 1.  Schematic of self-reflecting all-laser-driven Thomson scattering.

    图 2  LWFA中激光的参量的变化 (a) 焦斑; (b) 脉宽; (c) 能量(图中能量低于能量截止线时包含激光能量和尾场能量); (d) 激光能量衰减长度

    Fig. 2.  Evolution of laser parameters in LWFA: (a) Laser spot size; (b) laser duration; (c) laser energy (energy in figure contains laser parts and wakefield parts when it is below dashed line); (d) pump depletion length.

    图 3  LWFA中电子的参量变化 (a)电子平均能量; (b)失相长度; (c) 0.5 mm处轴线上的纵向尾场分布; (d)电子电荷量; (e)密度为4 × 1018 cm–3时电子束焦斑和脉宽; (f) 密度为4 × 1018 cm–3时电子束发散角

    Fig. 3.  Evolution of electron parameters in LWFA: (a) Average energy; (b) dephasing length; (c) longitudinal electric field on axis when d = 0.5 mm; (d) charge; (e) spot size and duration when np = 4 × 1018 cm–3; (f) divergence angle when np = 4 × 1018 cm–3.

    图 4  PM反射率

    Fig. 4.  Reflectivity of PM.

    图 5  汤姆孙散射X射线参数 (a) 能谱; (b) 角分布

    Fig. 5.  X-ray from Thomson sacttering: (a) Energy spectrum; (b) angle divergence distribution.

    图 6  X射线优化结果 (a) 亮度; (b) 光子数; (c) 光子能量

    Fig. 6.  Optimization results of X-ray: (a) Brightness; (b) photon number; (c) photon energy.

    表 1  等离子体密度4 × 1018 cm–3, PM位置2.5 mm时修正后的公式计算和数值模拟的部分参数比较

    Table 1.  Comparison of modified formula calculation and numerical simulation when plasma density is 4 × 1018 cm–3 and PM position is 2.5 mm away.

    方法经过LWFA的激光电子束X射线
    焦斑/μm脉宽/fs能量损失/(%·mm–1)能量/MeV焦斑/μm发散角/mrad光子数/107亮度/(1018photons·s–1·
    mm–2·mrad–2·
    (0.1%BW)–1)
    修正公式107174602.0184.11.3
    数值模拟106174501.8164.01.6
    下载: 导出CSV
  • [1]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [2]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [5]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [6]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [7]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [8]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [9]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [10]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [11]

    Sarri G, Corvan D J, Schumaker W, Cole J, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [12]

    Ta Phuoc K, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [13]

    Shaw J M, Bernstein A C, Zgadzaj R, Hannasch A, LaBerge M, Chang Y Y, Weichman K, Welch J, Henderson W, Tsai H E, Fazel N, Wang X, Ditmire T, Donovan M, Dyer G, Gaul E, Gordon J, Martinez M, Spinks M, Toncian T, Wagner C, Downer M C 2017 arXiv: 1705.08637 vl[physics.acc-ph]

    [14]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [15]

    Bruemmer T, Debus A, Pausch R, Osterhoff J, Gruener F 2020 Phys. Rev. Accel. Beams 23 031601Google Scholar

    [16]

    Fonseca R 2002 Proceedings of the Second International Conference on Computational ScienceICCS Amsterdam, Netherlands, April 21–24, 2002 p342

    [17]

    Lu W 2006 Ph. D. Dissertation (Los Angeles: University of California)

    [18]

    Chen P, Hortonsmith G, Ohgaki T 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 335 107Google Scholar

    [19]

    王广辉, 王晓方, 董克攻 2012 物理学报 61 165201Google Scholar

    Wang G H, Wang X F, Dong K G 2012 Acta Phys. Sin. 61 165201Google Scholar

    [20]

    Decker C D, Mori W B, Tzeng K C, Katsouleas T 1996 Phys. Plasmas 3 2047Google Scholar

    [21]

    Li G, Ain Q, Li S, Saeed M, Papp D, Kamperidis C, Hafz N A M 2020 Plasma Phys. Controlled Fusion 62 055004Google Scholar

    [22]

    Gotzfried J, Dopp A, Gilljohann M, Foerster M, Ding H, Schindler S, Schilling G, Buck A, Veisz L, Karsch S 2020 Phys. Rev. X 10 041015Google Scholar

    [23]

    Couperus J P, Pausch R, Kohler A, Zarini O, Kramer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [24]

    Modena Z N A, Dangor A E, Clayton C E, Marsh K A, Joshi C, MalkaV, Darrow C B, Danson C N, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [25]

    Amorim L D, Najafabadi N V 2018 Advanced Accelerator Concepts Breckenridge, Colorado, USA, August 12–17, 2018 p345

    [26]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [27]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, Tilborg J V, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [28]

    Swanson K K, Tsai H E, Barber S K, Lehe R, Mao H S, Steinke S, van Tilborg J, Nakamura K, Geddes C G R, Schroeder C B, Esarey E, Leemans W P 2017 Phys. Rev. Accel. Beams 20 051301Google Scholar

    [29]

    Thaury F Q C, Anna L, Tiberio C 2007 Nat. Phys. 3 424Google Scholar

    [30]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003Google Scholar

    [31]

    Ride S K, Esarey E, Baine M 1995 Phys. Rev. E 52 5425Google Scholar

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 张晓辉, 吴玉迟, 朱斌, 王少义, 闫永宏, 谭放, 于明海, 杨月, 李纲, 张杰, 温家星, 周维民, 粟敬钦, 谷渝秋. 一种低喷气量微气室喷嘴在激光尾场加速中的应用. 物理学报, 2023, 72(3): 035202. doi: 10.7498/aps.72.20221868
    [4] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统. 物理学报, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [5] 闫文超, 朱常青, 王进光, 冯杰, 李毅飞, 谭军豪, 陈黎明. 全光汤姆孙散射. 物理学报, 2021, 70(8): 084104. doi: 10.7498/aps.70.20210319
    [6] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计. 物理学报, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [7] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [8] 张瑶, 汤善治, 李明, 王立超, 高俊祥. 同步辐射中双压电片反射镜的研究现状. 物理学报, 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [9] 闫文超, 苏鲁宁, 林晓宣, 杜飞, 袁大伟, 廖国前, 刘成, 沈忠伟, 陈黎明, 李玉同, 马景龙, 鲁欣, 王瑄, 王兆华, 魏志义, 盛政明, 张杰. 高反射效率高定向性的热解石墨晶体X射线谱仪. 物理学报, 2014, 63(17): 170701. doi: 10.7498/aps.63.170701
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] 黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰. kHz激光与固体靶相互作用产生的X射线源. 物理学报, 2013, 62(20): 205204. doi: 10.7498/aps.62.205204
    [13] 周少彤, 李军, 黄显宾, 蔡红春, 张思群, 李晶, 段书超, 周荣国. 阳加速器钛丝X箍缩光源辐射特性实验研究. 物理学报, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [14] 孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰. 超强激光与Ar团簇相互作用中X射线的研究. 物理学报, 2012, 61(7): 075206. doi: 10.7498/aps.61.075206
    [15] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [17] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [18] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [20] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
计量
  • 文章访问数:  5793
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-04-03
  • 上网日期:  2021-04-14
  • 刊出日期:  2021-04-20

/

返回文章
返回