搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波变换的激光水下测距

刘欣宇 杨苏辉 廖英琦 林学彤

引用本文:
Citation:

基于小波变换的激光水下测距

刘欣宇, 杨苏辉, 廖英琦, 林学彤

Laser underwater ranging based on wavelet transform

Liu Xin-Yu, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong
PDF
HTML
导出引用
  • 提出一种基于小波变换思想的水下测距方法. 根据信号的能量一致性以及小波的带通滤波特性, 并以二元样条插值为架构, 实现信号的时频结合. 该方法先将时域信号进行小波时域分解滤波, 获得较为完整的时域有效信息, 然后对初步处理的时域信号进行小波频域分解, 通过找寻信号时频域对应的能量最值位置锁定目标, 实现精确测距目的. 进行不同衰减长度水体的连续光水下测距实验, 分析该方法对连续光水下探测的影响. 经实验验证, 该测距方法在输出功率2.3 W内, 成功实现对8个衰减长度内目标的准确测量, 其测距精度小于1 cm.
    This paper proposes an underwater ranging method based on wavelet transform. First, according to the band-pass filtering characteristics of the wavelet transform, the time-domain signal is decomposed in the frequency domain. The wavelet basis functions with high similarity are established. These wavelet basis functions contain complete frequency domain information of time-domain signals. This method can improve the ability to decompose frequency domain of time-domain signals and extract the information about the effective frequency domain. Then, using the multiple frequency domain decomposition approximations, the effective frequency domain information contained in the time domain signal is completely extracted.The time-frequency signal of wavelet time-frequency fusion ranging takes the energy consistency of the time-frequency domain signal as the link and uses the binary spline interpolation structure to realize the time-frequency combination of the signal. In this method, the time-domain signal is first decomposed and filtered by wavelet time-domain to obtain more complete time-domain effective information. But at this time, the time-domain signal is the superimposed form of frequency-domain information, so the energy domain information contained in the time-frequency signal is decomposed into the wavelet frequency domain through the binary spline interpolation, and the energy expression form of the time-frequency signal can be obtained. The target is locked by finding the position of the maximum value of energy corresponding to the time-frequency domain of the signal to achieve the purpose of precise ranging. By performing the wavelet multi-layer time-domain decomposition filtering first, the frequency domain decomposition range can be effectively reduced, thereby avoiding data redundancy and reducing the ability to realize the effective frequency domain resolution.By using this method we successively carry out continuous light underwater ranging experiments with different attenuation length water bodies and different modulation frequencies, and analyze the influence of this method on continuous light underwater detection. Experiments verify that this ranging method successfully achieves the accurate measurement of targets within 8 attenuation lengths within an output power of 2.3 W, and its ranging accuracy is less than 1 cm; the use of wavelet time-frequency fusion ranging can pass the frequency domain energy decomposition capability enhancement, to a certain extent, compensates for the measurement error caused by the significant attenuation of the effective signal. Therefore, the ranging method can be applied to signals with complex frequency domain information or including a bandwidth.
      通信作者: 杨苏辉, suhuiyang@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61835001)资助的课题
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61835001)
    [1]

    Alen N, Pellen F, Brun G L 2017 Appl. Opt. 56 736Google Scholar

    [2]

    宋红, 张云菲, 吴超鹏, 等 2019 红外与激光工程 48 4Google Scholar

    Song H, Zhang Y F, Wu C P, et al. 2019 Infrared Laser Eng. 48 4Google Scholar

    [3]

    胡波, 张云菲, 吴超鹏, 杨永, 陈宗恒, 宋宏, 陶军 2019 红外与激光工程 48 10Google Scholar

    Hu B, Zhang Y F, Wu C P, Yang Y, Chen Z H, Song H, Tao J 2019 Infrared Laser Eng. 48 10Google Scholar

    [4]

    Abshire J B, Sun X L, Riris H, et al. 2003 23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003) Toulouse, France, July 21−25, 2003 p1534

    [5]

    McLennan D 2010 Proc. SPIE 7826 782610

    [6]

    彭志兴, 周保琢, 陈华, 张志, 谭平 2018 激光应用技术 48 7Google Scholar

    Peng A, Zhi X, Zhou B Z, Chen H, Zhang Z, Tan P 2018 Laser Application Technology 48 7Google Scholar

    [7]

    丁燕 2007 博士学位论文 (上海: 同济大学)

    Ding Y 2007 Ph. D. Dissertation (Shanghai: Tongji University) (in Chinese)

    [8]

    李兵 2013 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Li B 2013 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Fine Mechanics of CAS) (in Chinese)

    [9]

    Kabashnikov V, Kuntsevich B 2017 Appl. Opt. 56 8378Google Scholar

    [10]

    Matwyschuk A 2014 Appl. Opt. 53 44Google Scholar

    [11]

    Matwyschuk A 2017 Appl. Opt. 56 7766Google Scholar

    [12]

    Matwyschuk A 2020 Appl. Opt. 59 7670Google Scholar

    [13]

    Ma M T, Kanda M, Crawford M L 1985 Proc. IEEE 73 388Google Scholar

    [14]

    Baumann E, Deschenes J D, Giorgetta F R, Swann W C, Coddington L, Newbury N R 2014 Opt. Lett. 39 4776Google Scholar

    [15]

    Yu Y, Liu B, Chen Z 2018 Appl. Opt. 57 7733Google Scholar

    [16]

    隋修宝, 陈钱, 顾国华, 徐彤 2011 红外与激光工程 40 1928Google Scholar

    Sui X B, Chen Q, Gu G H, Xu T 2011 Infrared Laser Eng. 40 1928Google Scholar

    [17]

    钟琳 2020 应用激光 40 129Google Scholar

    Zhong L 2020 Applied Laser 40 129Google Scholar

    [18]

    路明, 孔德浩, 苏益德 2018 激光与红外 48 1223Google Scholar

    Lu M, Kong D H, Su Y D 2018 Laser & Infrared 48 1223Google Scholar

    [19]

    彭冲 2016 博士学位论文 (长沙: 湖南师范大学)

    Peng C 2016 Ph. D. Dissertation (Changsha: Hunan Normal University) (in Chinese)

    [20]

    朱金龙 2017 博士学位论文 (天津: 河北工业大学)

    Zhu J L 2017 Ph. D. Dissertation (Tianjin: Hebei University of Technology) (in Chinese)

    [21]

    吴军, 桑明煌, 周行, 王贤平, 徐猛 2016 光子学报 45 31Google Scholar

    Wu J, Sang M H, Zhou X, Wang X P, Xu M 2016 Acta Photon. Sin. 45 31Google Scholar

  • 图 1  激光水下探测光学系统

    Fig. 1.  Laser underwater detection optical system.

    图 2  基于小波变换的时频分析方法对水下目标的探测过程

    Fig. 2.  Detection process of underwater targets based on wavelet transform time-frequency analysis method.

    图 3  回波信号与参考信号波形及相应运算结果 (a) 频率-相位差波形图; (b) 图(a)的傅里叶逆运算结果; (c), (d) 基准位置和1 m目标位置的时频能量极值的时域表示

    Fig. 3.  Echo signal and reference signal waveforms and corresponding calculation results: (a) Frequency vs. phase difference waveform diagram; (b) the Fourier inverse calculation result of panel (a); (c) and (d) time-frequency energy extreme value positions of the reference position and 1 m position of the target in the time-domain.

    图 4  不同频率分解间隔对探测目标的影响 (a), (b) 同一水体条件下, 不同频率分解间隔时1.5和2.5 m目标的测量误差; (c), (d) 不同衰减系数的水体条件下, 频域分解间隔为0.1和0.025 MHz时不同目标距离的测量误差

    Fig. 4.  Influences of different frequency decomposition intervals on detection targets: (a), (b) Measurement error at differently frequency decomposition intervals for 1.5 and 2.5 m under the same water body condition; (c), (d) under the water bodies with different attenuation coefficient conditions, the measurement error different distance targets at frequency domain decomposition interval of 0.1 and 0.025 MHz, .

    图 5  调制频率(50—200 MHz和700—850 MHz)对小波时频融合测距方法的影响 (a)—(d)在4.5和6个衰减长度下, 探测目标在极值频率位置的时域能量表示; (e), (f) 两频率范围下不同衰减长度对应的测量误差

    Fig. 5.  Influences of modulation frequency on wavelet time-frequency fusion ranging method, where the modulation frequency is a range of 50 to 200 MHz and 700 to 850 MHz: (a)–(d) Time-frequency domain energy extreme frequency position of measurement target under the two attenuation lengths of 4.5 and 6; (e), (f) measurement errors for different attenuation length at the two frequency ranges.

    图 6  基于小波变换的时频融合测距结果 (a)—(f)对于衰减长度为1—8.2的水体, 该测距方法测量的测量误差以及均方根

    Fig. 6.  Time-frequency fusion ranging results based on wavelet transform: (a)–(f) Ranging error and root mean square detected by this ranging method for water bodies with attenuation lengths of 1 to 8.2.

    表 1  不同衰减系数与距离功率的关系

    Table 1.  Relationship between different attenuation coefficients and distance power.

    样本目标距离/m回波信号
    强度/mW
    衰减
    系数/m–1
    平均衰减
    系数/m–1
    1026.50.99
    0.2518.50.99
    0.59.80.99
    13.60.99
    20502.00
    0.2518.41.99
    0.56.51.99
    0.64.52.01
    301503.00
    0.2453.00
    0.413.53.01
    0.64.12.99
    401503.50
    0.318.43.50
    0.54.53.51
    0.62.23.49
    502004.50
    0.181.54.50
    0.2334.51
    0.313.54.49
    602005.50
    0.1665.54
    0.15395.45
    0.2512.75.51
    下载: 导出CSV
  • [1]

    Alen N, Pellen F, Brun G L 2017 Appl. Opt. 56 736Google Scholar

    [2]

    宋红, 张云菲, 吴超鹏, 等 2019 红外与激光工程 48 4Google Scholar

    Song H, Zhang Y F, Wu C P, et al. 2019 Infrared Laser Eng. 48 4Google Scholar

    [3]

    胡波, 张云菲, 吴超鹏, 杨永, 陈宗恒, 宋宏, 陶军 2019 红外与激光工程 48 10Google Scholar

    Hu B, Zhang Y F, Wu C P, Yang Y, Chen Z H, Song H, Tao J 2019 Infrared Laser Eng. 48 10Google Scholar

    [4]

    Abshire J B, Sun X L, Riris H, et al. 2003 23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003) Toulouse, France, July 21−25, 2003 p1534

    [5]

    McLennan D 2010 Proc. SPIE 7826 782610

    [6]

    彭志兴, 周保琢, 陈华, 张志, 谭平 2018 激光应用技术 48 7Google Scholar

    Peng A, Zhi X, Zhou B Z, Chen H, Zhang Z, Tan P 2018 Laser Application Technology 48 7Google Scholar

    [7]

    丁燕 2007 博士学位论文 (上海: 同济大学)

    Ding Y 2007 Ph. D. Dissertation (Shanghai: Tongji University) (in Chinese)

    [8]

    李兵 2013 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Li B 2013 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Fine Mechanics of CAS) (in Chinese)

    [9]

    Kabashnikov V, Kuntsevich B 2017 Appl. Opt. 56 8378Google Scholar

    [10]

    Matwyschuk A 2014 Appl. Opt. 53 44Google Scholar

    [11]

    Matwyschuk A 2017 Appl. Opt. 56 7766Google Scholar

    [12]

    Matwyschuk A 2020 Appl. Opt. 59 7670Google Scholar

    [13]

    Ma M T, Kanda M, Crawford M L 1985 Proc. IEEE 73 388Google Scholar

    [14]

    Baumann E, Deschenes J D, Giorgetta F R, Swann W C, Coddington L, Newbury N R 2014 Opt. Lett. 39 4776Google Scholar

    [15]

    Yu Y, Liu B, Chen Z 2018 Appl. Opt. 57 7733Google Scholar

    [16]

    隋修宝, 陈钱, 顾国华, 徐彤 2011 红外与激光工程 40 1928Google Scholar

    Sui X B, Chen Q, Gu G H, Xu T 2011 Infrared Laser Eng. 40 1928Google Scholar

    [17]

    钟琳 2020 应用激光 40 129Google Scholar

    Zhong L 2020 Applied Laser 40 129Google Scholar

    [18]

    路明, 孔德浩, 苏益德 2018 激光与红外 48 1223Google Scholar

    Lu M, Kong D H, Su Y D 2018 Laser & Infrared 48 1223Google Scholar

    [19]

    彭冲 2016 博士学位论文 (长沙: 湖南师范大学)

    Peng C 2016 Ph. D. Dissertation (Changsha: Hunan Normal University) (in Chinese)

    [20]

    朱金龙 2017 博士学位论文 (天津: 河北工业大学)

    Zhu J L 2017 Ph. D. Dissertation (Tianjin: Hebei University of Technology) (in Chinese)

    [21]

    吴军, 桑明煌, 周行, 王贤平, 徐猛 2016 光子学报 45 31Google Scholar

    Wu J, Sang M H, Zhou X, Wang X P, Xu M 2016 Acta Photon. Sin. 45 31Google Scholar

  • [1] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法. 物理学报, 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [2] 李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓. 强度调制532 nm激光水下测距. 物理学报, 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [3] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [4] 周先春, 汪美玲, 石兰芳, 周林锋. 基于小波与重调和方程的扩散去噪模型的研究. 物理学报, 2015, 64(6): 064203. doi: 10.7498/aps.64.064203
    [5] 赵辽英, 马启良, 厉小润. 基于HIS 小波变换和MOPSO的全色与多光谱图像融合. 物理学报, 2012, 61(19): 194204. doi: 10.7498/aps.61.194204
    [6] 余海军, 杜建明, 张秀兰. 相干态的小波变换. 物理学报, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [7] 宋军, 许业军, 范洪义. 奇偶二项式光场态的小波变换. 物理学报, 2011, 60(8): 084208. doi: 10.7498/aps.60.084208
    [8] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块DCT变换编码的小波域多幅图像融合算法. 物理学报, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [9] 符懋敬, 庄建军, 侯凤贞, 宁新宝, 展庆波, 邵毅. 基于小波变换的人体步态序列提取. 物理学报, 2010, 59(6): 4343-4350. doi: 10.7498/aps.59.4343
    [10] 任磊, 陈祥光, 刘春涛. 基于小波变换的时域介电谱分析及其应用. 物理学报, 2009, 58(3): 2035-2041. doi: 10.7498/aps.58.2035
    [11] 赵文山, 何怡刚. 一种改进的开关电流滤波器实现小波变换的方法. 物理学报, 2009, 58(2): 843-851. doi: 10.7498/aps.58.843
    [12] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [13] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现. 物理学报, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [14] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [15] 赵 莉, 冯 稷, 翟光杰, 张利华. 小波变换在心磁信号处理中的应用. 物理学报, 2005, 54(4): 1943-1949. doi: 10.7498/aps.54.1943
    [16] 邓玉强, 邢岐荣, 郎利影, 柴 路, 王清月, 张志刚. THz波的小波变换频谱分析. 物理学报, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [17] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [18] 汪 渊, 白宣羽, 徐可为. 基于小波变换Cu-W薄膜表面形貌表征与硬度值分散性评价. 物理学报, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [19] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究. 物理学报, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [20] 宋菲君, 赵文杰, S. Jutamulia, 宋建力, 姚思一, 王 栋. Haar-Gaussian小波变换在边缘测量中的应用. 物理学报, 2003, 52(12): 3055-3060. doi: 10.7498/aps.52.3055
计量
  • 文章访问数:  4462
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-04-07
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回