搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于直角锥面变形镜的薄管激光光束质量提升新方法

何婷 田博宇 邱蝶 张彬

引用本文:
Citation:

基于直角锥面变形镜的薄管激光光束质量提升新方法

何婷, 田博宇, 邱蝶, 张彬

Novel method of improving beam quality of thin-wall tube laser based on right-angle cone deformable mirror

He Ting, Tian Bo-Yu, Qiu Die, Zhang Bin
PDF
HTML
导出引用
  • 针对大遮拦比窄环宽薄管激光光束质量提升需求, 提出了一种基于直角锥面变形镜的薄管激光光束质量提升新方法. 采用直角锥面实现薄管激光离轴像差的自校正, 再利用驱动单元控制直角锥面变形镜的形变来进一步校正残余像差, 进而实现对薄管激光光束质量的提升. 以48单元直角锥面变形镜为例, 利用有限元分析方法建立了直角锥面变形镜的物理模型, 分析了直角锥面变形镜对薄管激光畸变波前的校正能力. 结果表明, 基于直角锥面变形镜的薄管激光光束质量提升新方法能够有效校正大遮拦比窄环宽薄管激光的波前畸变, 显著提升薄管激光光束质量.
    Aiming at improving the beam quality of thin-wall tube laser, a novel method based on the right-angle cone deformable mirror is proposed. In the method, a reflector with inner right-angle conical surface is used, and the annular laser beam successively passes through the opposite sides of the tube, compensating for the off-axis aberrations of the annular laser beam. Next, the residual aberrations are corrected by the deformation of the right-angle cone mirror to further improve the beam quality. The physical model of the right-angle cone deformable mirror is built up by using the finite element analysis method, followed by optimizing the structural parameters of the right-angle cone deformable mirror. The preliminarily optimized right-angle cone deformable mirror drived by 48 actuators with a radius of 1.5 mm for each actuator and an interval of 11 mm between actuators is then utilized to correct the beam quality of the thin-wall tube laser. Results indicate that the output beam quality of the thin-wall tube laser degrades rapidly with the increasing of the tube’s concentricity error, parallelism error, taper error and source’s parallelism error. Fortunately, the beam quality is significantly improved by using the right-angle cone deformable mirror and the β factor greatly decreases. In addition, the performance of the non-ideal right-angle cone deformable mirror with a 20-μrad taper error and a 10-mrad collimation error is compared with that of the ideal mirror, and the results show that the β factor is controlled within 1.14 after having been corrected by the non-ideal right-angle cone deformable mirror. Therefore, the simulation results theoretically prove that the novel method can effectively eliminate the typical aberrations caused by the errors from fabrication and alignment and correct the wavefront distortion of the large-aperture thin-wall tube laser, thus significantly improving the beam quality.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 四川省科技计划项目(批准号: 2018JY0553)和中国科学院自适应光学重点实验室基金(批准号: LAOF1801)资助的课题
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Sichuan Provincial Science and Technology Program, China (Grant No. 2018JY0553) and the Key Laboratory on Adaptive Optics, Chinese Academy of Sciences (Grant No. LAOF1801)
    [1]

    董俊, 王光宇, 任滢滢 2013 中国激光 40 27Google Scholar

    Dong J, Wang G Y, Ren Y Y 2013 Chin. J. Laser. 40 27Google Scholar

    [2]

    Wittrock U, Weber H, Eppich B 1991 Opt. Lett. 16 1092Google Scholar

    [3]

    Clarkson W A, Shori R K, Savich M 2015 Conference on Solid State Lasers San Francisco, USA, February 7, 2015 p934216

    [4]

    李宁, 张伟桥, 刘洋, 唐晓军 2018 中国激光 45 17Google Scholar

    Li N, Zhang W Q, Liu Y, Tang X J 2018 Chin. J. Las. 45 17Google Scholar

    [5]

    李密, 周唐建, 徐浏, 高清松, 章健, 邬映臣, 汪丹, 胡浩, 唐淳, 于益, 吴振海, 李建民, 石勇, 赵娜 2018 光学学报 38 198Google Scholar

    Li M, Zhou T J, Xu L, Gao Q S, Zhang J, Wu Y C, Wang D, Hu H, Tang C, Yu Y, Wu Z H, Li J M, Shi Y, Zhao N 2018 Acta Opt. Sin. 38 198Google Scholar

    [6]

    Tian B Y, Zhong Z Q, Huang C 2019 IEEE Photonics J. 11 1Google Scholar

    [7]

    Burger L, Litvin I, Ngcobo S, Forbes A 2015 J. Opt. 17 015604Google Scholar

    [8]

    Cornelissen S A, Bierden P A, Bifano T G, Lam C V 2009 J. Micro-Nanolith. Mem. 8 767Google Scholar

    [9]

    Tokovinin A, Thomas S, Vdovin G 2004 SPIE Proceedings Advancements in Adaptive Optics Glasgow, USA, October 25, 2004 p580

    [10]

    Li M, Hu H, Gao Q S, Wang J T, Zhang J, Wu Y C, Zhou T J, Xu L, Tang C, Zhao N, Liu P 2017 IEEE Photonics J. 9 1Google Scholar

    [11]

    晏虎, 雷翔, 刘文劲, 王帅, 高源, 董理治, 杨平, 许冰 2012 强激光与粒子束 24 1663Google Scholar

    Yan H, Lei X, Liu W J, Wang S, Gao Y, Dong L Z, Yang P, Xu B 2012 High Pow. Las. Part. Beam. 24 1663Google Scholar

    [12]

    Yang P, Ning Y, Lei X 2010 Opt. Express 18 7121Google Scholar

    [13]

    Vdovin G, Loktev M, Simonov A, Gruneisen M T, Gonglewski J D, Giles M K 2005 SPIE Optics + Photonics San Diego, USA, August 18, 2005 p5894940 B

    [14]

    Wittrock U, Verpoort S 2010 Appl. Opt. 49 G37Google Scholar

    [15]

    Verpoort S, Rausch P, Wittrock U 2012 SPIE Proceedings Mems Adaptive Optics VI San Francisco, USA, January 21, 2012 p852909

    [16]

    Bayanna A R, Louis R E, Chatterjee S, Mathew S K, Venkatakrishnan P 2015 Appl. Opt 54 1727Google Scholar

    [17]

    Lu J S, Su G 2012 SPIE Optical Engineering + Applications San Diego, USA, October 17, 2012 p84880D

    [18]

    Bartsch D U, Freeman W R, Fainman Y, Zhu L, Sun P C 1999 Appl. Opt. 38 168Google Scholar

    [19]

    Wallace Ce B P, Hampton P J, Bradley C H, Conan R 2006 Opt. Express 14 10132Google Scholar

    [20]

    Guzmán D, Juez F, Myers R, Guesalaga A, Lasheras F S 2010 Opt. Express 18 21356Google Scholar

    [21]

    Mathur V, Vangala S R, Qian X, Goodhue W D, Khoury J 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics Tampa, USA, August 17, 2009 p156

    [22]

    Hembrecht M A, He M, Kempf C J, Olivier S S, Bifano T G, Kubby J 2012 MEMS Adaptive Optics VI San Francisco, USA, February 6, 2012 p825307

    [23]

    Sun C, Lei H, Wang D, Deng X, Zheng Y 2019 Opt. Express 27 9215Google Scholar

    [24]

    Wittrock U, Weber H, Eppich B 1989 Fourth International Meeting of the EUREKA HPSSL Project EU226 Berlin, Germany, October 12, 1989 p1175

    [25]

    Loiko P A, Yumashev K V, Kuleshov N V, Savitski V G, Calvez S, Burns D 2009 Opt. Express 17 23536Google Scholar

    [26]

    Tashiro W H 2000 Opt. Commun. 175 189Google Scholar

    [27]

    Tian B Y, Yu J C, Zhang B 2020 Opt. Eng. 59 1Google Scholar

    [28]

    Harvey J E, Callahan G M 1978 Adaptive Optical Components I, Washington, D. C., USA, August 8, 1978 p50

    [29]

    李佳, 田博宇, 余江川, 张彬 2021 中国激光 48 67Google Scholar

    Li J, Tian B Y, Yu J C 2021 Chin. J. Las. 48 67Google Scholar

  • 图 1  基于直角锥面变形镜的薄管激光畸变波前校正原理示意图

    Fig. 1.  The principle schematic diagram of tube laser distortion wavefront correction based on the right-angle cone deformable mirror.

    图 2  直角锥面变形镜驱动器分布示意图 (a) 变形镜后表面视图; (b) 变形镜侧视图

    Fig. 2.  Schematic diagram of drive units arrangement of the right-angle cone deformable mirror: (a) Rear surface of deformable mirror; (b) side view of deformable mirror

    图 3  等效变形镜示意图

    Fig. 3.  The diagram of equivalent deformable mirror.

    图 4  坐标变换示意图

    Fig. 4.  The diagram of coordinate transformation.

    图 5  薄管同心度误差为1 μm时的波像差分解及远场光强分布 (a) 薄管同心度误差1 μm时畸变波前波像差分解; (b) 远场光强分布

    Fig. 5.  The wavefront aberration decomposition and far-filed intensity distributions with the concentricity error of 1 μm: (a) The wavefront aberration decomposition; (b) far-filed intensity distribution.

    图 6  直角锥面变形镜的参数优化 (a) 环域离焦残余波前PV值随驱动器半径与主驱动器径向间距的变化; (b) 环域像散残余波前PV值随驱动器半径与主驱动器径向间距的变化

    Fig. 6.  Parameters optimization: (a) The PV variation of annular defocusing residual wavefront; (b) the PV variation of annular astigmatism residual wavefront.

    图 7  校正前后β因子变化 (a) β因子随薄管同心度误差变化; (b) β因子随薄管平行度误差变化; (c) β因子随薄管锥度误差变化; (d) β因子随光源平行度误差变化

    Fig. 7.  The curves of β factor: (a) Tube’s concentricity error; (b) tube’s parallelism error; (c) tube’s taper error; (d) source’s parallelism error.

    图 8  多误差耦合作用下校正前后远场光强分布及β因子 (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm, Δθ = 15 μrad, Δθa = 150 μrad, Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad, Δθs = 150 μrad

    Fig. 8.  Far-filed intensity distributions and β factor before and after correction under multi-error coupling: (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm; Δθ = 15 μrad; Δθa = 150 μrad; Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad; Δθs = 150 μrad.

    图 9  非理想直角锥面变形镜校正后远场光强分布及β因子 (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm, Δθ = 15 μrad, Δθa = 150 μrad, Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad, Δθs = 150 μrad

    Fig. 9.  Comparisons of far-filed intensity distribution and β factor under nonideal circumstances: (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm, Δθ = 15 μrad, Δθa = 150 μrad, Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad, Δθs = 150 μrad.

    表 1  材料力学参数

    Table 1.  Material parameters.

    ParametersBK7PZT
    Young’s mudulus/Gpa8170
    Poisson’s ratio0.170.33
    Density/(kg·m–3)24007700
    下载: 导出CSV

    表 2  直角锥面变形镜变形镜结构参数

    Table 2.  The parameters of the right-angle cone deformable mirror.

    ParametersValueParametersValue
    ri26 mmH30.7 mm
    ro31 mmΔHsub25 mm
    α45°ΔHmain11 mm
    γ30°ΔCsub_o19.5 mm
    rDi11.2 mmΔCsub_i10.3 mm
    rDo41.8 mmΔCmain_o16.9 mm
    RDi13.2 mmΔCmain_i12.9 mm
    RDo43.8 mm
    下载: 导出CSV
  • [1]

    董俊, 王光宇, 任滢滢 2013 中国激光 40 27Google Scholar

    Dong J, Wang G Y, Ren Y Y 2013 Chin. J. Laser. 40 27Google Scholar

    [2]

    Wittrock U, Weber H, Eppich B 1991 Opt. Lett. 16 1092Google Scholar

    [3]

    Clarkson W A, Shori R K, Savich M 2015 Conference on Solid State Lasers San Francisco, USA, February 7, 2015 p934216

    [4]

    李宁, 张伟桥, 刘洋, 唐晓军 2018 中国激光 45 17Google Scholar

    Li N, Zhang W Q, Liu Y, Tang X J 2018 Chin. J. Las. 45 17Google Scholar

    [5]

    李密, 周唐建, 徐浏, 高清松, 章健, 邬映臣, 汪丹, 胡浩, 唐淳, 于益, 吴振海, 李建民, 石勇, 赵娜 2018 光学学报 38 198Google Scholar

    Li M, Zhou T J, Xu L, Gao Q S, Zhang J, Wu Y C, Wang D, Hu H, Tang C, Yu Y, Wu Z H, Li J M, Shi Y, Zhao N 2018 Acta Opt. Sin. 38 198Google Scholar

    [6]

    Tian B Y, Zhong Z Q, Huang C 2019 IEEE Photonics J. 11 1Google Scholar

    [7]

    Burger L, Litvin I, Ngcobo S, Forbes A 2015 J. Opt. 17 015604Google Scholar

    [8]

    Cornelissen S A, Bierden P A, Bifano T G, Lam C V 2009 J. Micro-Nanolith. Mem. 8 767Google Scholar

    [9]

    Tokovinin A, Thomas S, Vdovin G 2004 SPIE Proceedings Advancements in Adaptive Optics Glasgow, USA, October 25, 2004 p580

    [10]

    Li M, Hu H, Gao Q S, Wang J T, Zhang J, Wu Y C, Zhou T J, Xu L, Tang C, Zhao N, Liu P 2017 IEEE Photonics J. 9 1Google Scholar

    [11]

    晏虎, 雷翔, 刘文劲, 王帅, 高源, 董理治, 杨平, 许冰 2012 强激光与粒子束 24 1663Google Scholar

    Yan H, Lei X, Liu W J, Wang S, Gao Y, Dong L Z, Yang P, Xu B 2012 High Pow. Las. Part. Beam. 24 1663Google Scholar

    [12]

    Yang P, Ning Y, Lei X 2010 Opt. Express 18 7121Google Scholar

    [13]

    Vdovin G, Loktev M, Simonov A, Gruneisen M T, Gonglewski J D, Giles M K 2005 SPIE Optics + Photonics San Diego, USA, August 18, 2005 p5894940 B

    [14]

    Wittrock U, Verpoort S 2010 Appl. Opt. 49 G37Google Scholar

    [15]

    Verpoort S, Rausch P, Wittrock U 2012 SPIE Proceedings Mems Adaptive Optics VI San Francisco, USA, January 21, 2012 p852909

    [16]

    Bayanna A R, Louis R E, Chatterjee S, Mathew S K, Venkatakrishnan P 2015 Appl. Opt 54 1727Google Scholar

    [17]

    Lu J S, Su G 2012 SPIE Optical Engineering + Applications San Diego, USA, October 17, 2012 p84880D

    [18]

    Bartsch D U, Freeman W R, Fainman Y, Zhu L, Sun P C 1999 Appl. Opt. 38 168Google Scholar

    [19]

    Wallace Ce B P, Hampton P J, Bradley C H, Conan R 2006 Opt. Express 14 10132Google Scholar

    [20]

    Guzmán D, Juez F, Myers R, Guesalaga A, Lasheras F S 2010 Opt. Express 18 21356Google Scholar

    [21]

    Mathur V, Vangala S R, Qian X, Goodhue W D, Khoury J 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics Tampa, USA, August 17, 2009 p156

    [22]

    Hembrecht M A, He M, Kempf C J, Olivier S S, Bifano T G, Kubby J 2012 MEMS Adaptive Optics VI San Francisco, USA, February 6, 2012 p825307

    [23]

    Sun C, Lei H, Wang D, Deng X, Zheng Y 2019 Opt. Express 27 9215Google Scholar

    [24]

    Wittrock U, Weber H, Eppich B 1989 Fourth International Meeting of the EUREKA HPSSL Project EU226 Berlin, Germany, October 12, 1989 p1175

    [25]

    Loiko P A, Yumashev K V, Kuleshov N V, Savitski V G, Calvez S, Burns D 2009 Opt. Express 17 23536Google Scholar

    [26]

    Tashiro W H 2000 Opt. Commun. 175 189Google Scholar

    [27]

    Tian B Y, Yu J C, Zhang B 2020 Opt. Eng. 59 1Google Scholar

    [28]

    Harvey J E, Callahan G M 1978 Adaptive Optical Components I, Washington, D. C., USA, August 8, 1978 p50

    [29]

    李佳, 田博宇, 余江川, 张彬 2021 中国激光 48 67Google Scholar

    Li J, Tian B Y, Yu J C 2021 Chin. J. Las. 48 67Google Scholar

  • [1] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [2] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [3] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [4] 张艳艳, 陈苏婷, 葛俊祥, 万发雨, 梅永, 周晓彦. 自适应非凸稀疏正则化下自适应光学系统加性噪声的去除. 物理学报, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [5] 姜曼, 马鹏飞, 周朴, 王小林. 基于多层电介质光栅光谱合成的光束质量. 物理学报, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [6] 刘章文, 李正东, 周志强, 袁学文. 基于模糊控制的自适应光学校正技术. 物理学报, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [7] 凡木文, 黄林海, 李梅, 饶长辉. 抑制光束抖动的压电倾斜镜高带宽控制. 物理学报, 2016, 65(2): 024209. doi: 10.7498/aps.65.024209
    [8] 郭友明, 马晓燠, 饶长辉. 自适应光学系统倾斜校正回路的最优闭环带宽. 物理学报, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [9] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟. 物理学报, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [10] 刘超, 胡立发, 穆全全, 曹召良, 胡红斌, 张杏云, 芦永军, 宣丽. 用于开环液晶自适应光学系统的模式预测技术研究. 物理学报, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [11] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [12] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [13] 白福忠, 饶长辉. 自参考干涉波前传感器中针孔直径对闭环自适应光学系统校正精度的影响. 物理学报, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [14] 王文鹏, 许周速, 徐军, 陈钢. 封离式He-N2-CO2激光器横模特性的测量与分析. 物理学报, 2009, 58(8): 5423-5428. doi: 10.7498/aps.58.5423
    [15] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究. 物理学报, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [16] 潘雷雷, 张彬, 阴素芹, 张艳. 掺Yb光纤激光器阵列谱合成系统的光束传输模型及光束特性分析. 物理学报, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [17] 王 宁, 陆雨田, 李晓莉, 焦志勇. InnoSlab混合腔输出光束质量的理论研究. 物理学报, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [18] 李超宏, 鲜 浩, 姜文汉, 饶长辉. 用于白天自适应光学的波前探测方法分析. 物理学报, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
    [19] 王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫. 可用于超精细加工的高重复率、高光束质量飞秒再生放大脉冲的产生研究. 物理学报, 2004, 53(1): 87-92. doi: 10.7498/aps.53.87
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  4074
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-04-26
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回