搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双合成波长数字全息低噪声分级解包裹方法

刘磊 徐志博 钱文硕 李文杰 谢芳 钟志 单明广

引用本文:
Citation:

双合成波长数字全息低噪声分级解包裹方法

刘磊, 徐志博, 钱文硕, 李文杰, 谢芳, 钟志, 单明广

Low-noise hierarchical phase unwrapping method for dual-wavelength digital holography using two synthetical wavelengths

Liu Lei, Xu Zhi-Bo, Qian Wen-Shuo, Li Wen-Jie, Xie Fang, Zhong Zhi, Shan Ming-Guang
PDF
HTML
导出引用
  • 双波长数字全息中差分合成波长可拓展无相位包裹测量纵深范围, 但显著放大相位噪声; 加性合成波长可抑制相位噪声, 但大幅缩小无相位包裹测量范围. 因此, 本文利用差分合成波长无包裹测量范围大与加性合成波长噪声低的特性, 提出一种双合成波长数字全息低噪声分级解包裹方法. 该方法利用由差分合成波长获得的“相位差”引导单波长包裹相位进行解包裹, 然后再利用单波长的解包裹后的光程差引导加性合成波长获得的包裹“相位和”进行解包裹, 通过分级实现双波长低噪声解包裹. 实验结果表明, 该方法可以简单、快速地实现双波长数字全息低噪声解包裹.
    Dual-wavelength digital holography can expand the unambiguous measurement depth in phase unwrapping by using a differential synthetic wavelength which is longer than the single illumination wavelength. However, the phase noise is significantly amplified due to the magnification of the differential synthetic wavelength, resulting in a lower measurement accuracy. On the other hand, a lower noise level can be achieved by using additive synthetic-wavelength which is shorter than the single illumination wavelength. However, the corresponding unambiguous measurement depth is greatly reduced due to the phase ambiguity. In this case, combining the merits of the differential synthetic-wavelength and the additive synthetic-wavelength, different low noise phase unwrapping algorithms have been developed in recent years. However, these algorithms are complex and time consuming because they need to calculate multiple intermediate variables or search for the constrained boundary conditions in two-dimensional space. Therefore, in this paper, we develop a hierarchical phase unwrapping algorithm by using the two synthetic wavelengths for dual-wavelength digital holography to realize low noise and fast unambiguous measurement with large depth. In this algorithm, the unwrapped phase difference obtained by the differential synthetic wavelength is used to guide the wrapped phase of one single wavelength to realize phase unwrapping, and then the optical path difference obtained by the single-wavelength unwrapped phase is employed to guide the wrapped phase sum, and thus realizing phase unwrapping. As a result, the phase noise is attenuated and the depth sensitivity is preserved for dual-wavelength phase unwrapping. After theoretical analysis, a series of simulation experiments is carried out on the reconstructed quality, anti-noise characteristics and speed through comparing with state-of-the-art dual-wavelength phase unwrapping algorithms, including the conventional algorithm, the linear programming algorithm and the direct linear programming algorithm. In this case, a flipping dual-wavelength common-path digital holography with orthogonal carrier is built to acquire multiplexed off-axis hologram in one shot and illustrate the operation of the algorithm with circular step target, and stability test of the setup. Both the simulation and experimental results show that the proposed method can be simplified and deterministic, resulting in a lower noise phase unwrapping in a time of 20.5 ms for a phase map of one megapixel. We expect that the proposed method can have practical applications in measurement that requires high accuracy, fast speed, and large depth.
      通信作者: 单明广, smgsir@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 61775046)、黑龙江省自然科学基金(批准号:LC2018027)和中央高校基本科研业务费资助的课题
      Corresponding author: Shan Ming-Guang, smgsir@gmail.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61775046), Natural Science Foundation of Heilongjiang Province, China (Grant No. LC2018027), and Fundamental Research Funds for the Central Universities
    [1]

    Gabor D 1948 Nature 161 777Google Scholar

    [2]

    Lu X X, Chen J P, Liu S D, Ma Z J, Zhang Z, Zhong L Y 2012 Opt. Las. Eng. 50 1431Google Scholar

    [3]

    Popescu P, Ikeda T, Dasari R R, Feld M S 2006 Opt. lett. 31 775Google Scholar

    [4]

    Girshovitz P Shaked N T 2013 Opt. Express 21 5701Google Scholar

    [5]

    Guo R L, Yao B L, Gao P, Min J W, Han J, Yu X, Lei M, Yan S H, Yang Y L, Dan D, Ye T 2013 Appl. Opt. 52 3484Google Scholar

    [6]

    Hao B G, Diao M, Shan M G, Zhang Y B, Zhong Z 2013 Opt. Express 21 2126Google Scholar

    [7]

    Frenklach I, Girshovitz P, Shaked N T 2014 Opt. Lett. 39 1525Google Scholar

    [8]

    Rawat S, Komatsu S, Markman A, Anand A, Javidi B 2017 Appl. Opt. 56 D127Google Scholar

    [9]

    Hu C F, Zhu S S, Gao L, Popescu G 2018 Opt. Lett. 43 3373Google Scholar

    [10]

    Picazo-Bueno J A, Trusiak M, MicóV 2019 Opt. Express 27 5655Google Scholar

    [11]

    Shaked N T, Micó V, Trusiak M, Kuś A, Mirsky S K 2020 Adv. Opt. Photon. 12 556Google Scholar

    [12]

    Polhemus C 1973 Appl. Opt. 12 2071Google Scholar

    [13]

    Gass J, Dakoff A, Kim M K 2003 Opt. Lett. 28 1141Google Scholar

    [14]

    Kühn J, Colomb T, Montfort F, Charrière F, Emery Y, Cuche E, Marquet P, Depeursinge C 2007 Opt. Express 15 7231Google Scholar

    [15]

    Min J W, Yao B L, Zhou M L, Guo R L, Lei M, Yang Y L, Dan D, Yan S H, Peng T 2014 J. Opt. 16 125409Google Scholar

    [16]

    袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤 2014 物理学报 63 166Google Scholar

    Yuan F, Yuan C J, Nie S P, Zhu Z Q, Ma Q Y, Li Y, Zhu W Y, Feng S T 2014 Acta Phys. Sin. 63 166Google Scholar

    [17]

    Khmaladze A, Matz R L, Zhang C, Wang T, Banaszak Holl M M, Chen Z 2011 Opt. Lett. 36 912Google Scholar

    [18]

    Wang Z M, Jiao J N, Qu W J, Yang F, Li H R, Tian A L, Asundi A 2017 Appl. Opt. 56 424Google Scholar

    [19]

    Di J L, Zhang J W, Xi T L, Ma C J, Zhao J L 2015 J. Micro/Nanolithography, MEMS, and MOEMS 14 041313Google Scholar

    [20]

    Xiong J X, Zhong L Y, Liu S D, Qiu X, Zhou Y F, Tian J D, Lu X X 2017 Opt. Express 25 7181Google Scholar

    [21]

    Shan M G, Liu L, Zhong Z, Liu B, Zhang Y B 2019 Opt. Las. Eng. 117 1Google Scholar

    [22]

    Liu Q, Li L L, Huang X J, Zhang H, Yue X B 2020 J. Opt. 22 045701Google Scholar

    [23]

    Shan M G, Liu L, Zhong Z, Liu B, Luan G Y, Zhang Y B 2017 Opt. Express 25 26253Google Scholar

    [24]

    Liu L, Shan M G, Zhong Z, Liu B, Luan G Y, Diao M, Zhang Y B 2017 Opt. Lett. 42 4331Google Scholar

  • 图 1  分级解包裹流程图

    Fig. 1.  Flowchart of Hierarchical phase unwrapping.

    图 2  (a)待测物体高度图; (b)离轴全息图; (c) λ1和(d) λ2对应的包裹相位

    Fig. 2.  (a) Original height map of the simulated sample; (b) simulated multiplexed off-axis hologram; and corresponding wrapped phase maps at (c) λ1 and (d) λ2.

    图 3  (a)算法I, (b)算法Ⅱ, (c)算法Ⅲ和(d)算法Ⅳ的恢复结果; (e)算法I, (f)算法Ⅱ, (g)算法Ⅲ和(h)算法Ⅳ恢复结果的残差图

    Fig. 3.  Reconstructed results by (a) Algorithm I, (b) Algorithm Ⅱ, (c) Algorithm Ⅲ, and (d) Algorithm Ⅳ; and the corresponding residue maps obtained by (e) Algorithm I, (f) Algorithm Ⅱ, (g) Algorithm Ⅲ, (h) Algorithm Ⅳ.

    图 4  残差图(图3(e)3(h))中黑色虚线标注数据

    Fig. 4.  Data marked with the black dashed lines in residue maps shown in Fig.3(e)-3(h).

    图 5  残差图(图3(e)3(h))中(a)标准差和(b)峰谷值

    Fig. 5.  Standard deviation and peak-valley value of residue maps shown in Fig.3(e)-3(h).

    图 6  视场翻转双波长载波正交数字全息原理图

    Fig. 6.  Flipping dual-wavelength common-path digital holography with orthogonal carrier.

    图 7  (a)复合全息图; (b)频谱图; (c) λ1和(d) λ2对应的包裹相位

    Fig. 7.  (a) Multiplexed hologram and its (b) power spectrum; and corresponding wrapped phase maps at (c) λ1 and (d) λ2.

    图 8  圆柱恢复结果 (a)算法I; (b)算法Ⅱ; (c)算法Ⅲ; (d)算法Ⅳ

    Fig. 8.  Reconstructed results of the step target by (a) Algorithm I; (b) Algorithm Ⅱ; (c) Algorithm Ⅲ; (d) Algorithm Ⅳ.

    图 9  恢复结果的一维剖面图(图8中白色虚线)

    Fig. 9.  Reconstructed result of 1 D height profiles(along the white dashed lines in Fig.8).

    图 10  液滴酒精恢复结果 (a)算法I; (b)算法Ⅱ; (c)算法Ⅲ; (d)算法Ⅳ;

    Fig. 10.  Reconstructed result of a drop of alcohol: (a) Algorithm I; (b) Algorithm Ⅱ; (c) Algorithm Ⅲ, ; (d) Algorithm Ⅳ..

    图 11  恢复结果的一维剖面图(图10中白色虚线)

    Fig. 11.  Reconstructed result of 1 D height profiles (along the white dashed lines in Fig.10).

    图 12  稳定性实验

    Fig. 12.  Stability test for the proposed method.

  • [1]

    Gabor D 1948 Nature 161 777Google Scholar

    [2]

    Lu X X, Chen J P, Liu S D, Ma Z J, Zhang Z, Zhong L Y 2012 Opt. Las. Eng. 50 1431Google Scholar

    [3]

    Popescu P, Ikeda T, Dasari R R, Feld M S 2006 Opt. lett. 31 775Google Scholar

    [4]

    Girshovitz P Shaked N T 2013 Opt. Express 21 5701Google Scholar

    [5]

    Guo R L, Yao B L, Gao P, Min J W, Han J, Yu X, Lei M, Yan S H, Yang Y L, Dan D, Ye T 2013 Appl. Opt. 52 3484Google Scholar

    [6]

    Hao B G, Diao M, Shan M G, Zhang Y B, Zhong Z 2013 Opt. Express 21 2126Google Scholar

    [7]

    Frenklach I, Girshovitz P, Shaked N T 2014 Opt. Lett. 39 1525Google Scholar

    [8]

    Rawat S, Komatsu S, Markman A, Anand A, Javidi B 2017 Appl. Opt. 56 D127Google Scholar

    [9]

    Hu C F, Zhu S S, Gao L, Popescu G 2018 Opt. Lett. 43 3373Google Scholar

    [10]

    Picazo-Bueno J A, Trusiak M, MicóV 2019 Opt. Express 27 5655Google Scholar

    [11]

    Shaked N T, Micó V, Trusiak M, Kuś A, Mirsky S K 2020 Adv. Opt. Photon. 12 556Google Scholar

    [12]

    Polhemus C 1973 Appl. Opt. 12 2071Google Scholar

    [13]

    Gass J, Dakoff A, Kim M K 2003 Opt. Lett. 28 1141Google Scholar

    [14]

    Kühn J, Colomb T, Montfort F, Charrière F, Emery Y, Cuche E, Marquet P, Depeursinge C 2007 Opt. Express 15 7231Google Scholar

    [15]

    Min J W, Yao B L, Zhou M L, Guo R L, Lei M, Yang Y L, Dan D, Yan S H, Peng T 2014 J. Opt. 16 125409Google Scholar

    [16]

    袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤 2014 物理学报 63 166Google Scholar

    Yuan F, Yuan C J, Nie S P, Zhu Z Q, Ma Q Y, Li Y, Zhu W Y, Feng S T 2014 Acta Phys. Sin. 63 166Google Scholar

    [17]

    Khmaladze A, Matz R L, Zhang C, Wang T, Banaszak Holl M M, Chen Z 2011 Opt. Lett. 36 912Google Scholar

    [18]

    Wang Z M, Jiao J N, Qu W J, Yang F, Li H R, Tian A L, Asundi A 2017 Appl. Opt. 56 424Google Scholar

    [19]

    Di J L, Zhang J W, Xi T L, Ma C J, Zhao J L 2015 J. Micro/Nanolithography, MEMS, and MOEMS 14 041313Google Scholar

    [20]

    Xiong J X, Zhong L Y, Liu S D, Qiu X, Zhou Y F, Tian J D, Lu X X 2017 Opt. Express 25 7181Google Scholar

    [21]

    Shan M G, Liu L, Zhong Z, Liu B, Zhang Y B 2019 Opt. Las. Eng. 117 1Google Scholar

    [22]

    Liu Q, Li L L, Huang X J, Zhang H, Yue X B 2020 J. Opt. 22 045701Google Scholar

    [23]

    Shan M G, Liu L, Zhong Z, Liu B, Luan G Y, Zhang Y B 2017 Opt. Express 25 26253Google Scholar

    [24]

    Liu L, Shan M G, Zhong Z, Liu B, Luan G Y, Diao M, Zhang Y B 2017 Opt. Lett. 42 4331Google Scholar

  • [1] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [2] 王子硕, 刘磊, 刘晨博, 刘珂, 钟志, 单明广. 数字差分-积分快速相位解包裹算法研究. 物理学报, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [3] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, 2022, 71(4): 044204. doi: 10.7498/aps.71.20211253
    [4] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211253
    [5] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [6] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [7] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生. 物理学报, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [8] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控. 物理学报, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [9] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [10] 石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍. 像面数字全息的重建相位误差分析和改善. 物理学报, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [11] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建. 物理学报, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [12] 袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤. 双Lloyd镜数字全息显微测量术. 物理学报, 2014, 63(10): 104207. doi: 10.7498/aps.63.104207
    [13] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [14] 张继涛, 吴学健, 李岩, 尉昊赟. 利用光频梳提高台阶高度测量准确度的方法. 物理学报, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [15] 张慧, 卢娟, 文锦辉, 雷亮, 焦中兴, 赖天树. 不同波长飞秒脉冲的相位测量. 物理学报, 2011, 60(12): 124211. doi: 10.7498/aps.60.124211
    [16] 韩凯, 许晓军, 周朴, 马阎星, 王小林, 刘泽金. 多波长激光主动式相干合成理论初探. 物理学报, 2011, 60(7): 074206. doi: 10.7498/aps.60.074206
    [17] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [18] 毛庆和, 冯素娟, 蒋 建, 朱宗玖, 刘文清. 基于FLM的L波段双波长EDFL的双稳态变换. 物理学报, 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [19] 孙宏林, 张纲, 郭东耀. 双波长双相角结构不变量的比邻原理. 物理学报, 1989, 38(5): 824-828. doi: 10.7498/aps.38.824
    [20] 王永昭, C. S. IH. 波长缩放高频调制全息成象公式的校正. 物理学报, 1989, 38(5): 812-817. doi: 10.7498/aps.38.812
计量
  • 文章访问数:  4705
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-06-01
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回