搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双偏振调制的可变对称三角波形的生成

王创业 宁提纲 李晶 裴丽 郑晶晶 李雨键 艾渤

引用本文:
Citation:

基于双偏振调制的可变对称三角波形的生成

王创业, 宁提纲, 李晶, 裴丽, 郑晶晶, 李雨键, 艾渤

Triangular-shaped waveform generation with variable symmetry based on dual-polarization modulation

Wang Chuang-Ye, Ning Ti-Gang, Li Jing, Pei Li, Zheng Jing-Jing, Li Yu-Jian, Ai Bo
PDF
HTML
导出引用
  • 提出并验证了一种基于双偏振调制生成可变对称三角波形的方法. 通过设置合适的调制器的调制指数和移相器的相移, 使得调制器生成信号光的强度近似等于理想三角波形傅里叶级数展开式的前三项, 从而生成不同对称因子的三角波形(三阶近似波形). 之前的三角波形生成方案大多生成对称三角波形或锯齿波形(锯齿波形可认为是非对称三角波形), 且对称因子不可调谐, 而本方案生成的三角波形的对称因子可调谐范围可达0%—100%, 这极大地拓展了三角波形的应用范围. 引入均方根误差(root-mean-square error, RMSE)来衡量生成波形与理论波形的相似度, 计算可发现, 理论上本方案生成的对称因子范围在14%—86%的三角波形与理想波形有良好的相似度(RMSE < 0.044), 仿真中生成波形的RMSE也非常接近理论误差. 在实验中, 通过使用频率为4GHz的射频信号生成了对称因子范围在20%—80%的三角波形.
    Photonic generation of triangular-shaped waveform with variable symmetry based on dual-polarization modulation is proposed and demonstrated. Based on the external modulation method, a dual-polarization modulator is used to modulate the radio frequency signal to generate the needed optical signal. By setting the modulation index of the modulator and phase shift of phase shifters appropriately, the optical intensity of generated signal can equal approximately the first three terms of the Fourier series expansion of the ideal triangular-shaped waveform, so triangular-shaped waveforms with different symmetry factors can be generated. Most of previous triangular waveform generation schemes generate symmetrical triangular waveform or sawtooth waveform (sawtooth waveform can be regarded as an asymmetrical triangular waveform), and the symmetry factor is not tunable. The tunable range of symmetry factor of triangular-shaped waveform generated by this scheme can reach 0%–100%, which will greatly expand the application range of triangular-shaped waveforms. The root-mean-square error (RMSE) is introduced to measure the similarity between the generated waveform and the theoretical waveform. It can be found that theoretically the triangular-shaped waveform with a symmetry factor in a range from 14% to 86% has a good similarity to the ideal waveform (RMSE < 0.044), and the RMSE of the generated waveform in the simulation is also very close to the theoretical RMSE. Experimentally, the 4GHz triangular-shaped waveforms with different values of symmetry factor (20%–80%) are obtained by using 4GHz radio frequency signal.
      通信作者: 李晶, lijing@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61827817, 62005012)和北京市自然科学基金(批准号: 4192022)资助的课题
      Corresponding author: Li Jing, lijing@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61827817, 62005012) and the Natural Science foundation of Beijing, China (Grant No. 4192022).
    [1]

    Bhamber R S, Latkin A I, Boscolo S, Turitsyn S K 2008 34th European Conference on Optical Communication, September 21–25, 2008 p1

    [2]

    Cho S W, Rassau A, Gornisiewicz W 2007 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, January 16–18, 2007 p217

    [3]

    Xu S Z, Wang P, Dong Y G 2016 Sensors 16 576Google Scholar

    [4]

    Won Y S, Kim C H, Lee S G 2015 IEEE Sens. J. 15 7142Google Scholar

    [5]

    Verscheure N, Finot C 2011 Electron. Lett. 47 1194Google Scholar

    [6]

    Ye J, Yan L S, Pan W, Luo B, Zou X H, Yi A L, Yao S 2011 Opt. Lett. 36 1458Google Scholar

    [7]

    Jiang H Y, Yan L S, Sun Y F, Ye J, Pan W, Luo B, Zou X H 2013 Opt. Express 21 6488Google Scholar

    [8]

    Li W, Wang W Y, Sun W H, Wang W T, Liu J G, Zhu N H 2014 Opt. Lett. 39 4758Google Scholar

    [9]

    Dai B, Gao Z S, Wang X, Chen H W, Kataoka N, Wada N 2013 J. LightwaveTechnol. 31 145Google Scholar

    [10]

    Li J, Ning T G, Pei L, Zheng J J, Li Y Q, Yuan J, Wang Y Q, Zhang C, Chen H Y 2014 Chin. Opt. Lett. 12 120602Google Scholar

    [11]

    Gao Y S, Wen A J, Liu W Y, Zhang H X, Xiang S Y 2016 IEEE Photonics J. 8 7801609Google Scholar

    [12]

    Li W, Wang W T, Zhu N H 2014 IEEE Photonics J. 6 5500608Google Scholar

    [13]

    Liu X K, Pan W, Zou X H, Zheng D, Yan L S, Luo B, Lu B 2014 J. Lightwave Technol. 32 3797Google Scholar

    [14]

    Huang L, Chen D L, Wang P, Zhang T T, Xiang P, Zhang Y Y, Pu T, Chen X F 2015 IEEE Photonics Technol. Lett. 27 2500Google Scholar

    [15]

    Wang W Y, Li W, Sun W H, Wang W T, Liu J G, Zhu N H 2015 IEEE Photonics Technol. Lett. 27 522Google Scholar

    [16]

    Li Y Y, Wen A J, Zhang W, Wang Q, Li X R 2019 Opt. Commun. 445 231Google Scholar

    [17]

    He Y T, Jiang Y, Zi Y J, Bai G F, Tian J, Xia Y, Zhang X Y, Dong R Y, Luo H 2018 Opt. Express 26 7829Google Scholar

    [18]

    Wei C, Jiang Y, Luo H, Dong R Y, Tian J, Zi Y J, Liu H F, Wang R 2020 Opt. Express 28 8098Google Scholar

    [19]

    Xia Y, Jiang Y, Zi Y J, He Y T, Tian J, Zhang X Y, Luo H, Dong R Y 2018 Opt. Commun. 414 177Google Scholar

    [20]

    Bai G F, Hu L, Jiang Y, Tian J, Zi Y J, Wu T W, Huang F Q 2017 Opt. Commun. 396 134Google Scholar

    [21]

    Li J, Ning T G, Pei L, Zheng J J 2019 J. Mod. Opt. 66 1457Google Scholar

  • 图 1  不同对称因子对应的b1, b2, b3

    Fig. 1.  Magnitude of b1, b2 and b3 versus symmetry factor δ.

    图 2  可变对称三角波形生成方案的原理示意图. CW laser, 连续波激光器; PC, 偏振控制器; RF source, 射频源; EPS, 电功分器; EA, 电放大器; PS, 电移相器; OPS, 光功分器; MZM, 单驱动马赫曾德尔调制器; PBC, 偏振合束器; 90°PR, 90°偏振旋转器; PD, 光电探测器

    Fig. 2.  Schematic diagram of the proposed scheme. CW laser, continuous wave laser; PC, polarization controller; RF source, radio frequency source; EPS, electrical power splitter; EA, electrical amplifier; PS, phase shifter; OPS, optical power splitter; MZM, single-drive Mach-Zehnder Modulator; PBC, polarization beam combiner; 90° PR, 90° polarization rotator; PD, photodiode.

    图 3  仿真生成的对称因子为0%—100%的时域波形

    Fig. 3.  Simulated generated temporal triangular-shaped waveforms with δ = 0%−100%.

    图 4  仿真生成的对称因子为20%的三角波形 (a) 时域波形; (b) 对应的电谱

    Fig. 4.  Simulated generated triangular-shaped waveform with δ = 20%: (a) Temporal waveform; (b) corresponding electrical spectrum.

    图 5  对称因子为20%的三角波形的合成示意图

    Fig. 5.  Synthesis schematic diagram of triangular-shaped waveform with δ = 20%.

    图 6  (a) 三阶近似波形、五阶近似波形和十阶近似波形的理论RMSE; (b) 仿真生成波形的RMSE

    Fig. 6.  (a) Theoretical RMSE for third-order approximate waveform, fifth-order approximate waveform and tenth-order approximate waveform; (b) the RMSE of simulated generated waveforms.

    图 7  可变对称三角波形生成方案的实验平台. Dual-wavelength laser, 双波长激光器; Polarization controller, 偏振控制器; Signal generator, 信号发生器; Power splitter, 电功分器; Electrical delay line, 电延迟线; Electrical amplifier, 电放大器; 180° hybrid coupler, 180°电桥; DP-BPSK modulator, 双偏振BPSK调制器; Photodiode, 光电探测器; Oscilloscope, 示波器

    Fig. 7.  Experimental platform for triangular-shaped waveform with variable symmetry generation scheme.

    图 8  实验生成的对称因子为20%, 30%, 40%, 50%, 60%, 70%和80%的三角波形

    Fig. 8.  Generated triangular-shaped waveforms with δ = 20%, 30%, 40%, 50%, 60%, 70% and 80% in the experiment.

    图 9  实验生成的对称因子为20%的三角波形 (a) 时域波形; (b) 对应的电谱

    Fig. 9.  Generated triangular-shaped waveform with δ = 20%: (a) Temporal waveform; (b) corresponding electrical spectrum.

    表 1  不同对称因子三角波形的生成条件

    Table 1.  Generated conditions for triangular-shaped waveforms with different symmetry factor.

    对称因子相移1相移2相移3调制系数1调制系数2
    δθ1θ2θ3m1m2
    0%0π/401.150.83
    10%0π/401.10.81
    20%0π/400.920.76
    30%0π/400.490.53
    40%π/2π/23π/20.610.41
    50%π/203π/20.760
    60%π/203π/20.610.41
    70%03π/400.490.53
    80%03π/400.920.76
    90%03π/401.10.81
    100%03π/401.150.83
    下载: 导出CSV
  • [1]

    Bhamber R S, Latkin A I, Boscolo S, Turitsyn S K 2008 34th European Conference on Optical Communication, September 21–25, 2008 p1

    [2]

    Cho S W, Rassau A, Gornisiewicz W 2007 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, January 16–18, 2007 p217

    [3]

    Xu S Z, Wang P, Dong Y G 2016 Sensors 16 576Google Scholar

    [4]

    Won Y S, Kim C H, Lee S G 2015 IEEE Sens. J. 15 7142Google Scholar

    [5]

    Verscheure N, Finot C 2011 Electron. Lett. 47 1194Google Scholar

    [6]

    Ye J, Yan L S, Pan W, Luo B, Zou X H, Yi A L, Yao S 2011 Opt. Lett. 36 1458Google Scholar

    [7]

    Jiang H Y, Yan L S, Sun Y F, Ye J, Pan W, Luo B, Zou X H 2013 Opt. Express 21 6488Google Scholar

    [8]

    Li W, Wang W Y, Sun W H, Wang W T, Liu J G, Zhu N H 2014 Opt. Lett. 39 4758Google Scholar

    [9]

    Dai B, Gao Z S, Wang X, Chen H W, Kataoka N, Wada N 2013 J. LightwaveTechnol. 31 145Google Scholar

    [10]

    Li J, Ning T G, Pei L, Zheng J J, Li Y Q, Yuan J, Wang Y Q, Zhang C, Chen H Y 2014 Chin. Opt. Lett. 12 120602Google Scholar

    [11]

    Gao Y S, Wen A J, Liu W Y, Zhang H X, Xiang S Y 2016 IEEE Photonics J. 8 7801609Google Scholar

    [12]

    Li W, Wang W T, Zhu N H 2014 IEEE Photonics J. 6 5500608Google Scholar

    [13]

    Liu X K, Pan W, Zou X H, Zheng D, Yan L S, Luo B, Lu B 2014 J. Lightwave Technol. 32 3797Google Scholar

    [14]

    Huang L, Chen D L, Wang P, Zhang T T, Xiang P, Zhang Y Y, Pu T, Chen X F 2015 IEEE Photonics Technol. Lett. 27 2500Google Scholar

    [15]

    Wang W Y, Li W, Sun W H, Wang W T, Liu J G, Zhu N H 2015 IEEE Photonics Technol. Lett. 27 522Google Scholar

    [16]

    Li Y Y, Wen A J, Zhang W, Wang Q, Li X R 2019 Opt. Commun. 445 231Google Scholar

    [17]

    He Y T, Jiang Y, Zi Y J, Bai G F, Tian J, Xia Y, Zhang X Y, Dong R Y, Luo H 2018 Opt. Express 26 7829Google Scholar

    [18]

    Wei C, Jiang Y, Luo H, Dong R Y, Tian J, Zi Y J, Liu H F, Wang R 2020 Opt. Express 28 8098Google Scholar

    [19]

    Xia Y, Jiang Y, Zi Y J, He Y T, Tian J, Zhang X Y, Luo H, Dong R Y 2018 Opt. Commun. 414 177Google Scholar

    [20]

    Bai G F, Hu L, Jiang Y, Tian J, Zi Y J, Wu T W, Huang F Q 2017 Opt. Commun. 396 134Google Scholar

    [21]

    Li J, Ning T G, Pei L, Zheng J J 2019 J. Mod. Opt. 66 1457Google Scholar

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 陈子涵, 宋梦齐, 陈恒, 王志立. 双三角形相位光栅X射线干涉仪的条纹可见度. 物理学报, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [3] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [4] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较. 物理学报, 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [5] 裴世鑫, 徐辉, 孙婷婷, 李金花. 正三角型三芯光纤中等腰对称平面波的调制不稳定性分析. 物理学报, 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [6] 范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才. 面向真彩色三维显示的分层角谱算法和Gerchberg-Saxton算法研究. 物理学报, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [7] 田子建, 李玮祥, 樊京. 基于双三角形金属条的二维可衍生超材料性能分析. 物理学报, 2015, 64(3): 034102. doi: 10.7498/aps.64.034102
    [8] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [9] 刘永迪, 李虹, 张波, 郑琼林, 游小杰. 基于双重傅里叶级数的混沌SPWM频谱量化分析. 物理学报, 2014, 63(7): 070503. doi: 10.7498/aps.63.070503
    [10] 冯友君, 林中校, 张蓉竹. 连续位相板均方根梯度对焦斑匀滑特性的影响. 物理学报, 2011, 60(10): 104202. doi: 10.7498/aps.60.104202
    [11] 李晶, 宁提纲, 裴丽, 周倩, 胡旭东, 祁春慧, 高嵩, 杨龙. 三角形谱啁啾光纤光栅的制备及其在光纤无线单边带调制系统中的应用. 物理学报, 2011, 60(5): 054203. doi: 10.7498/aps.60.054203
    [12] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [13] 曾祥楷, 饶云江. Bragg光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597
    [14] 黄素娟, 王朔中, 于瀛洁. 共轭对称延拓傅里叶计算全息. 物理学报, 2009, 58(2): 952-958. doi: 10.7498/aps.58.952
    [15] 杨 珺, 吕志伟, 何伟明, 阮双琛. 双布里渊放大池放大控制脉冲波形的研究. 物理学报, 2007, 56(8): 4622-4626. doi: 10.7498/aps.56.4622
    [16] 蔡履中, 张幼文. 彩虹全息图成象的傅里叶分析. 物理学报, 1982, 31(8): 1020-1029. doi: 10.7498/aps.31.1020
    [17] 何祚庥, 张肇西, 黄涛. 关于复合场场论的微扰展开式. 物理学报, 1976, 25(3): 215-225. doi: 10.7498/aps.25.215
    [18] 陈治融. 三中心、四中心积分的r12-1展开式. 物理学报, 1975, 24(6): 448-451. doi: 10.7498/aps.24.448
    [19] 侯伯宇. Green函数及δ函数的三方向球函数展开式. 物理学报, 1964, 20(1): 11-18. doi: 10.7498/aps.20.11
    [20] 林为干. 某些傅里葉级数的求和法. 物理学报, 1955, 11(6): 429-438. doi: 10.7498/aps.11.429
计量
  • 文章访问数:  4281
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-06-16
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回