搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪

王甜甜 王慧 朱艳春 王丽嘉

引用本文:
Citation:

基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪

王甜甜, 王慧, 朱艳春, 王丽嘉

Motion tracking of left myocardium in cardiac cine magnetic resonance image based on displacement flow U-Net and variational autoencoder

Wang Tian-Tian, Wang Hui, Zhu Yan-Chun, Wang Li-Jia
PDF
HTML
导出引用
  • 心血管疾病(cardiovascular diseases, CVDs)的高发病率和高死亡率已经严重影响了人类的生存质量. 如何评估心脏功能、辅助临床CVDs诊疗和预后评估, 是一个迫切需要解决的问题 . 针对这个问题, 本文在前期心脏电影磁共振(cardiac cine magnetic resonance, CCMR)图像左心肌分割的基础上, 提出一种基于位移流U-Net(DispFlow_UNet)和生物力学变分自动编码器(variational autoencoder, VAE)的左心肌运动追踪方法: DispFlow_UNet_VAE. 主要研究内容有: 1) 搭建压缩激励残差U-net网络精准分割左心肌, 根据分割结果计算心室体积、心肌质量等, 评估心脏整体功能; 2) 根据DispFlow_UNet_VAE估计CCMR图像连续帧之间的左心室运动, 结合左心肌分割掩膜得到左心肌密集位移场; 3)利用模拟数据真实位移场、临床数据集对追踪结果进行对比和评估. 结果表明, 本文追踪算法具有较高的精度和泛化能力.
    The high morbidity and mortality of cardiovascular diseases (CVDs) seriously affects the quality of human life. How to asses cardiac function, assist in the diagnosis and treatment of clinical CVDs and evaluate prognosis is a problem to be solved urgently. In response to this issue, based on previous work of Cardiac Cine Magnetic Resonance (CCMR) image segmentation of the left myocardium (LVM), a robust and accurate LVM motion tracking method (DispFlow_UNet_Flow) with using the displacement flow UNet (DispFlow_UNet) and biomechanics-informed variational autoencoder (VAE) is proposed in this paper. The following are the main research contents: (1) building a compressed excitation residual U-net network to accurately segment LVM, calculating the ventricular volume and myocardial mass according to the segmentation results, and then evaluating the overall cardiac function; (2) reconstructing the dense displacement field (DDF) based on the proposed motion tracking method, and obtaining the LVM dense displacement field by combining the LVM segmentation mask; (3) contrasting and evaluating the motion tracking results by using the true displacement vector field of simulated data and clinical data sets. All the results show that the tracking algorithm proposed in this paper has high precision and generalization capability.
      通信作者: 王丽嘉, lijiawangmri@163.com
    • 基金项目: 广东省重点领域研发计划项目(批准号: 2019B20230004, 2020B010113015)资助的课题.
      Corresponding author: Wang Li-Jia, lijiawangmri@163.com
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province (Grant Nos. 2019B20230004, 2020B010113015).
    [1]

    World Health Organization, http://origin.who.int/mediacentrse/factsheets/fs317/en/ [2019−4−17]

    [2]

    胡盛寿, 高润霖, 刘力生, 朱曼璐, 王文, 王拥军, 吴兆苏, 李惠君, 顾东风, 杨跃进, 郑哲, 陈伟伟 2019 中国循环学杂志 34 209

    Hu S S, Gao R L, Liu L S, Zhu M L, Wang W, Wang Y J, Wu Z S, Li H J, Gu D F, Yang Y J, Zheng Z, Chen W W 2019 Chin. Circ. J. 34 209

    [3]

    Stathogiannis K, Mor-Avi V, Rashedi N, Lang R M, Patel A R 2020 Med. Image Anal. 68 190

    [4]

    Peng P, Lekadir K, Goova A, Shao L, Petersen S E, Frangi A F 2016 Magn. Reson. Mater. Phys. , Biol. Med. 29 155

    [5]

    Frangi A F, Niessen W J, Viergever M A 2001 IEEE Trans. Med. Imaging 20 2Google Scholar

    [6]

    Young, Alistair A 2006 Curr. Cardiol. Rev. 2 271Google Scholar

    [7]

    Underwood S R, Rees R S, Savage P E, Klipstein R H, Firmin D N, Fox K M, Poole-Wilson P A, Longmore D B 1986 Br. Heart J. 56 334Google Scholar

    [8]

    Darasz K H, Underwood S R, Bayliss J, Forbat S M, Keegan J, Poole-Wilson P A, Sutton G C 2002 Int. J. Cardiovas. Imaging 18 135Google Scholar

    [9]

    Castillo E, Lima J, Bluemke D A 2003 Radiographics 23 S127Google Scholar

    [10]

    Mcveigh E R, Zerhouni E A 1991 Radiol. 180 677Google Scholar

    [11]

    Wang H, Amini A A 2012 IEEE Trans. Med. Imaging 31 487Google Scholar

    [12]

    Yu H, Sun S, Yu H, Chen X, Shi H, Huang T, Chen T 2020 arXiv: 2003.04492 v2 [cs. CV]

    [13]

    Afshin M, Ben Ayed I, Punithakumar K, Law M, Islam A, Goela A, Peters T, Li S 2014 IEEE Trans. Med. Imaging 33 481Google Scholar

    [14]

    Wang L, Clarysse P, Liu Z, Gao B, Delachartre P 2019 Med. Image Anal. 57 136Google Scholar

    [15]

    Yousefi-Banaem H, Kermani S, Asiaei S, Sanei H 2017 Comput. Biol. Med. 80 56Google Scholar

    [16]

    Tobon-Gomez C, Craene M D, Mcleod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetenakis S, Muller-Lutz A, Rasche V, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen H, Pennec X, Razavi R, Ruecjert D, Frangi A F, Rhode K 2013 Med. Image Anal. 17 632Google Scholar

    [17]

    Puyol-Anton E, Ruijsink B, Bai W, Langet H, Sinclair M, De-Craene M, Schnabel J, Piro P, King A 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) Washington, USA, April 1, 2018 p1139

    [18]

    Mcleod K, Sermesant M, Beerbaum P, Pennec X 2015 IEEE Trans. Med. Imaging 34 1562Google Scholar

    [19]

    Qin C, Bai W, Schlemper J, Petersen S, Piechnik S, Neubauer S, Rueckert D 2018 Medical Image Computing and Computer Assisted Intervention-MICCAI 2018 Granada, Spain, September 16, 2018 p472

    [20]

    Zheng Q, Delingette H, Ayache N 2019 Med. Image Anal. 56 80Google Scholar

    [21]

    Vos B D, Berendsen F F, Viergever M A , Staring M, Igum I 2017 ML-CDS 2017: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Québec City, Canada, September 10, 2017 p204

    [22]

    Qiao M, Wang Y, Guo Y, Huang L, Xia L, Tan Q 2020 Med. Phys. 47 4189Google Scholar

    [23]

    Chen P, Chen X, Chen E, Yu H, Chen T, Sun S 2020 arXiv: 2008.07579v1 [eess. IV]

    [24]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015 Munich, Germany October 5–9, 2015 p234

    [25]

    王慧 2020 硕士学位论文 (上海: 上海理工大学)

    Wang H 2020 M. S. Thesis (Shanghai: University of Shanghai for Science and Technology) (in Chinese)

    [26]

    Qiu H, Qin C, Folgoc L L, Hou B, Schlemper Jo, Ruechert D 2019 STACOM 2019: Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges Shenzhen, China, October 13, 2019 p186

    [27]

    Krebs J, Delingette H E, Mailhe B, Ayache N, Mansi T 2019 IEEE Trans. Med. Imaging 38 2165Google Scholar

    [28]

    Kingma D P, Welling M 2014 2nd International Conference on Learning Representations, ICLR 2014-Conference Track Proceedings Banff, Canada, April 14–16, 2014

    [29]

    Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng, Pheng-Ann, Cetin I, Lekadir K, Camara O, Ballester M 2018 IEEE Trans. Med. Imaging 37 2514Google Scholar

    [30]

    Duchateau N, Sermesant M, Delingette H, Ayache N 2017 IEEE Trans. Med. Imaging 37 755Google Scholar

    [31]

    Rueckert D, Sonoda L I, Hayes C, Hill D L G, Leach M O, Hawkes D J 1999 IEEE Trans. Med. Imaging 18 712Google Scholar

  • 图 1  基于SSFP序列的CCMR图像

    Fig. 1.  CCMR images based on SSFP sequence .

    图 2  压缩激励残差U-net网络结构

    Fig. 2.  Squeeze-and-excitation residual U-shaped network.

    图 3  SERU-net左心肌分割结果

    Fig. 3.  Results of left myocardium segmentation by SERU-net.

    图 4  DispFlow_UNet_VAE运动追踪框架

    Fig. 4.  The motion tracking architecture of DispFlow_UNet_VAE.

    图 5  DispFlow_UNet网络框架

    Fig. 5.  The network architecture of DispFlow_UNet.

    图 6  VAE网络

    Fig. 6.  The network architecture of VAE.

    图 7  ED (左)与ES (右)的原始图像及金标准

    Fig. 7.  Original image and its ground truth of ED (left) and ES (right).

    图 8  训练集(蓝)与验证集(橙)的损失曲线

    Fig. 8.  Loss curves of training set (blue) and verification set (orange).

    图 9  利用预测位移场将ES扭曲至ED的示例图

    Fig. 9.  Example diagram of warping ES to ED using the predicted displacement field.

    图 10  不同病例类型预测的位移图

    Fig. 10.  Predicted displacement fields of different case types.

    图 11  本文方法与其他方法的DM (a)和MCD (b)指标箱形图

    Fig. 11.  Box chart of DM (a) and MCD (b) indicators of the method presented in this paper and other methods.

    图 12  预测位移矢量与位移真值矢量对比

    Fig. 12.  Comparison between the predicted displacement field (left) and the true displacement field (right).

    图 13  预测位移矢量(红色)与位移真值矢量(绿色)对比

    Fig. 13.  Predicted displacement field (left) and the true displacement field (right).

    表 1  实验数据

    Table 1.  The experimental data.

    数据集数据量相位数层数磁共振扫描仪
    ACDC10012—359—101.5 T Siemens Area
    3.0 T Siemens
    Trio Tim
    临床数据7520—286—101.5 T GE
    合成MRI数据15309—14
    下载: 导出CSV

    表 2  ACDC数据集分配情况

    Table 2.  ACDC data set allocation.

    n重交叉验证(Foldn)Fold1Fold2Fold3Fold4Fold5
    内部数据data_ intHCM MINFNOR RVADCM MINFNOR RVADCM HCMNOR RVADCM HCMMINF RVADCM HCMMINF NOR
    外部数据 data_ extDCMHCMMINFNOR RVA
    训练集data_int×0.8
    验证集data_int×0.1
    预测集data_int×0.1 + data_ext×1
    下载: 导出CSV

    表 3  左心室功能指参数 (均值±标准差)

    Table 3.  Left ventricular function parameters (Mean ± standard deviation).

    EDV
    /mL
    ESV/mLSV
    /mL
    EF
    /%
    ED_LVM/L·min–1ES_LVM
    /g
    97.94
    ±34.73
    38.133
    ±21.30
    61.39
    ±24.43
    62.90
    ±15.3
    88.23
    ±35.23
    84.13±33.22
    下载: 导出CSV

    表 4  不同追踪方法Dice系数、MCD和HD的对比

    Table 4.  Comparison of Dice coefficients, MCD and HD of different tracking methods.

    方法DiceMCDHD
    LVCLVMLVCLVMLVCLVM
    FFD0.920 (0.029)0.797 (0.034)1.256 (0.387)1.192 (0.392)3.431 (0.688)3.439 (1.181)
    DL+L20.912 (0.037)0.800 (0.057)1.340 (0.428)1.171 (0.286)3.699 (1.099)3.285 (0.717)
    DispFlow_UNet0.925 (0.024)0.818 (0.054)1.203 (0.329)0.971 (0.120)3.347 (0.785)2.906 (0.358)
    DispFlow_UNet_VAE0.946 (0.016)0.843 (0.031)0.924 (0.279)0.931 (0.239)2.991 (0.960)3.178 (0.744)
    下载: 导出CSV

    表 5  临床数据集上的模型泛化性能

    Table 5.  Model generalization performance on clinical datasets.

    数据集DiceMCD
    LVCLVMRVCLVCLVMRVC
    ACDC0.946 (0.016)0.843 (0.031)0.876 (0.078)0.924 (0.279)0.931 (0.239)1.348 (0.858)
    临床数据0.882 (0.022)0.836 (0.059)0.850 (0.093)1.874 (0.383)1.079 (0.262)1.427 (0.579)
    下载: 导出CSV
  • [1]

    World Health Organization, http://origin.who.int/mediacentrse/factsheets/fs317/en/ [2019−4−17]

    [2]

    胡盛寿, 高润霖, 刘力生, 朱曼璐, 王文, 王拥军, 吴兆苏, 李惠君, 顾东风, 杨跃进, 郑哲, 陈伟伟 2019 中国循环学杂志 34 209

    Hu S S, Gao R L, Liu L S, Zhu M L, Wang W, Wang Y J, Wu Z S, Li H J, Gu D F, Yang Y J, Zheng Z, Chen W W 2019 Chin. Circ. J. 34 209

    [3]

    Stathogiannis K, Mor-Avi V, Rashedi N, Lang R M, Patel A R 2020 Med. Image Anal. 68 190

    [4]

    Peng P, Lekadir K, Goova A, Shao L, Petersen S E, Frangi A F 2016 Magn. Reson. Mater. Phys. , Biol. Med. 29 155

    [5]

    Frangi A F, Niessen W J, Viergever M A 2001 IEEE Trans. Med. Imaging 20 2Google Scholar

    [6]

    Young, Alistair A 2006 Curr. Cardiol. Rev. 2 271Google Scholar

    [7]

    Underwood S R, Rees R S, Savage P E, Klipstein R H, Firmin D N, Fox K M, Poole-Wilson P A, Longmore D B 1986 Br. Heart J. 56 334Google Scholar

    [8]

    Darasz K H, Underwood S R, Bayliss J, Forbat S M, Keegan J, Poole-Wilson P A, Sutton G C 2002 Int. J. Cardiovas. Imaging 18 135Google Scholar

    [9]

    Castillo E, Lima J, Bluemke D A 2003 Radiographics 23 S127Google Scholar

    [10]

    Mcveigh E R, Zerhouni E A 1991 Radiol. 180 677Google Scholar

    [11]

    Wang H, Amini A A 2012 IEEE Trans. Med. Imaging 31 487Google Scholar

    [12]

    Yu H, Sun S, Yu H, Chen X, Shi H, Huang T, Chen T 2020 arXiv: 2003.04492 v2 [cs. CV]

    [13]

    Afshin M, Ben Ayed I, Punithakumar K, Law M, Islam A, Goela A, Peters T, Li S 2014 IEEE Trans. Med. Imaging 33 481Google Scholar

    [14]

    Wang L, Clarysse P, Liu Z, Gao B, Delachartre P 2019 Med. Image Anal. 57 136Google Scholar

    [15]

    Yousefi-Banaem H, Kermani S, Asiaei S, Sanei H 2017 Comput. Biol. Med. 80 56Google Scholar

    [16]

    Tobon-Gomez C, Craene M D, Mcleod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetenakis S, Muller-Lutz A, Rasche V, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen H, Pennec X, Razavi R, Ruecjert D, Frangi A F, Rhode K 2013 Med. Image Anal. 17 632Google Scholar

    [17]

    Puyol-Anton E, Ruijsink B, Bai W, Langet H, Sinclair M, De-Craene M, Schnabel J, Piro P, King A 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) Washington, USA, April 1, 2018 p1139

    [18]

    Mcleod K, Sermesant M, Beerbaum P, Pennec X 2015 IEEE Trans. Med. Imaging 34 1562Google Scholar

    [19]

    Qin C, Bai W, Schlemper J, Petersen S, Piechnik S, Neubauer S, Rueckert D 2018 Medical Image Computing and Computer Assisted Intervention-MICCAI 2018 Granada, Spain, September 16, 2018 p472

    [20]

    Zheng Q, Delingette H, Ayache N 2019 Med. Image Anal. 56 80Google Scholar

    [21]

    Vos B D, Berendsen F F, Viergever M A , Staring M, Igum I 2017 ML-CDS 2017: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Québec City, Canada, September 10, 2017 p204

    [22]

    Qiao M, Wang Y, Guo Y, Huang L, Xia L, Tan Q 2020 Med. Phys. 47 4189Google Scholar

    [23]

    Chen P, Chen X, Chen E, Yu H, Chen T, Sun S 2020 arXiv: 2008.07579v1 [eess. IV]

    [24]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015 Munich, Germany October 5–9, 2015 p234

    [25]

    王慧 2020 硕士学位论文 (上海: 上海理工大学)

    Wang H 2020 M. S. Thesis (Shanghai: University of Shanghai for Science and Technology) (in Chinese)

    [26]

    Qiu H, Qin C, Folgoc L L, Hou B, Schlemper Jo, Ruechert D 2019 STACOM 2019: Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges Shenzhen, China, October 13, 2019 p186

    [27]

    Krebs J, Delingette H E, Mailhe B, Ayache N, Mansi T 2019 IEEE Trans. Med. Imaging 38 2165Google Scholar

    [28]

    Kingma D P, Welling M 2014 2nd International Conference on Learning Representations, ICLR 2014-Conference Track Proceedings Banff, Canada, April 14–16, 2014

    [29]

    Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng, Pheng-Ann, Cetin I, Lekadir K, Camara O, Ballester M 2018 IEEE Trans. Med. Imaging 37 2514Google Scholar

    [30]

    Duchateau N, Sermesant M, Delingette H, Ayache N 2017 IEEE Trans. Med. Imaging 37 755Google Scholar

    [31]

    Rueckert D, Sonoda L I, Hayes C, Hill D L G, Leach M O, Hawkes D J 1999 IEEE Trans. Med. Imaging 18 712Google Scholar

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 物理学报, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [3] 张赞, 黄北举, 陈弘达. 基于可重构硅光滤波器的计算重建片上光谱仪. 物理学报, 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [4] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [5] 张普渡, 王伟权, 李哲民, 张资旋, 王叶晨, 周泓宇, 银燕. 基于深度学习的钻孔辐射压离子加速建模. 物理学报, 2023, 72(18): 184103. doi: 10.7498/aps.72.20230702
    [6] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述. 物理学报, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [7] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [8] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [9] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的复杂流场流动特性表征方法. 物理学报, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [10] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [11] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [12] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [13] 南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林. 基于YOLOv3框架的高分辨电镜图像原子峰位置检测. 物理学报, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [14] 苏博, 陶芬, 李可, 杜国浩, 张玲, 李中亮, 邓彪, 谢红兰, 肖体乔. 同步辐射纳米CT图像配准方法研究. 物理学报, 2021, 70(16): 160704. doi: 10.7498/aps.70.20210156
    [15] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [16] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [17] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [18] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [19] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [20] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
计量
  • 文章访问数:  4747
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-07-07
  • 上网日期:  2021-08-16
  • 刊出日期:  2021-11-20

/

返回文章
返回