搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率

方文玉 陈粤 叶盼 魏皓然 肖兴林 黎明锴 AhujaRajeev 何云斌

引用本文:
Citation:

二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率

方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌

Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt)

Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin
PDF
HTML
导出引用
  • 基于第一性原理计算方法, 研究了二维XO2 (X = Ni, Pd, Pt)的稳定性、弹性、电子结构和热导率. 计算结果显示, 二维XO2同时具备较好的机械和动力学稳定性. 此外, 二维NiO2, PdO2和PtO2的杨氏模量分别为124.69 N/m, 103.31 N/m和116.51 N/m, 泊松比分别为0.25, 0.24和0.27, 并呈现各向同性. 电子能带结构表明, 二维XO2 (X = Ni, Pd, Pt)为间接带隙半导体, 计算能隙分别为2.95 eV, 3.00 eV和3.34 eV, 且价带顶和导带底的能级主要由Ni-3d, Pd-4d, Pt-5d和O-2p轨道电子组成. 通过畸变势理论计算载流子迁移率, 结果显示二维XO2 (X = Ni, Pd, Pt)沿armchair和zigzag方向的有效质量和形变势表现出明显的各向异性, 电子/空穴的迁移率最高分别为13707.96/53.25 cm2·V–1·s–1, 1288.12/19.18 cm2·V–1·s–1和404.71/270.60 cm2·V–1·s–1. 此外, 在300 K温度下, 二维XO2 (X = Ni, Pd, Pt)的晶格热导率分别为53.55 W·m–1·K–1, 19.06 W·m–1·K–1和17.43 W·m–1·K–1, 这表明二维XO2 (X = Ni, Pd, Pt)在纳米电子材料和导热器件方面具备应用潜力.
    Based on the first-principles calculations, the stability, elastic constants, electronic structure, and lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt) are investigated in this work. The results show that XO2 (X = Ni, Pd, Pt) have mechanical and dynamic stability at the same time. In addition, the Young’s modulus of monolayer NiO2, PdO2 and PtO2 are 124.69 N·m–1, 103.31 N·m–1 and 116.51 N·m–1, Poisson’s ratio of monolayer NiO2, PdO2 and PtO2 are 0.25, 0.24 and 0.27, respectively, and each of them possesses high isotropy. The band structures show that monolayer XO2 (X = Ni, Pd, Pt) are indirect band-gap semiconductors with energy gap of 2.95 eV, 3.00 eV and 3.34 eV, respectively, and the energy levels near the valence band maximum and conduction band minimum are mainly composed of Ni-3d/Pd-4d/Pt-5d and O-2p orbital electrons. Based on deformation potential theory, the carrier mobility of each monolayer is calculated, and the results show that the effective mass and deformation potential of monolayer XO2 (X = Ni, Pd, Pt) along the armchair and zigzag directions show obvious anisotropy, and the highest electron and hole mobility are 13707.96 and 53.25 cm2·V–1·s–1, 1288.12 and 19.18 cm2·V–1·s–1, and 404.71 and 270.60 cm2·V–1·s–1 for NiO2, PdO2 and PtO2, respectively. Furthermore, the lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt) at 300 K are 53.55 W·m–1·K–1, 19.06 W·m–1·K–1 and 17.43 W·m–1·K–1, respectively. These properties indicate that monolayer XO2 (X = Ni, Pd, Pt) have potential applications in nanometer electronic materials and thermal conductivity devices.
      通信作者: 黎明锴, mkli@hubu.edu.cn ; 何云斌, ybhe@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61874040, 11774082, 11975093)、国家重点研发计划(批准号: 2019YFB1503500)、湖北省自然科学基金创新研究群体(批准号: 2019CFA006)和湖北省高等学校优秀中青年科技创新团队计划(批准号: T201901)
      Corresponding author: Li Ming-Kai, mkli@hubu.edu.cn ; He Yun-Bin, ybhe@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874040, 11774082, 11975093), the National Key R&D Program of China (Grant No. 2019YFB1503500), the Creative Research Groups of Natural Science Foundation of Hubei Province, China (Grant No. 2019CFA006), and the Program for Science and Technology Innovation Team in Colleges of Hubei Province, China (Grant No. T201901)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Wang D, Song X L, Li P, Gao X J J, Gao X F 2020 J. Mater. Chem. B 8 9028Google Scholar

    [3]

    Halo M, Casassa S, Maschio L, Pisani C, Dovesi R, Ehinon D, Baraille I, Rerat M, Usvyat D 2011 Phys. Chem. Chem. Phys. 13 4434Google Scholar

    [4]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [5]

    Fang W Y, Kang W B, Zhao J, Zhang P C 2020 Chin. Phys. B 29 096301Google Scholar

    [6]

    Yeoh K H, Yoon T L, Rusi, Ong D S, Lim T L 2018 Appl. Surf. Sci. 445 161Google Scholar

    [7]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85Google Scholar

    [8]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [9]

    Yang Y, Zhang H, Song L H, Liu Z L 2021 Appl. Surf. Sci. 542 148691Google Scholar

    [10]

    Li X B, Guo P, Cao T F, Liu H, Lau W M, Liu L M 2015 Sci. Rep. 5 10848Google Scholar

    [11]

    Sharma S, Kumar S, Schwingenschlögl U 2017 Phys. Rev. Appl. 8 044013Google Scholar

    [12]

    Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar

    [13]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [14]

    Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar

    [15]

    Yan P, Gao G Y, Ding G Q, Qin D 2019 Rsc Adv. 9 12394Google Scholar

    [16]

    Naghavi S S, He J, Xia Y, Wolverton C 2018 Chem. Mater. 30 5639Google Scholar

    [17]

    Hu Z Y, Li K Y, Lu Y, Huang Y, Shao X H 2017 Nanoscale 9 16093Google Scholar

    [18]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [19]

    Chen Z Y, Xiong M, Zeng Z Y, Chen X R, Chen Q F 2021 Solid State Commun. 326 114163Google Scholar

    [20]

    Rajput K, Roy D R 2019 Appl. Nanosci. 9 1845Google Scholar

    [21]

    Qu L H, Yu J, Mu Y L, Fu X L, Zhong C G, Min Y, Zhou P X, Zhang J M, Zou Y Q, Lu T S 2019 Mater. Res. Bull. 119 110533Google Scholar

    [22]

    Chaurasiya R, Dixit A, Pandey R 2019 J. Appl. Phys. 125 082540Google Scholar

    [23]

    Ersan F, Ozaydin H D, Gokoglu G, Akturk E 2017 Appl. Surf. Sci. 425 301Google Scholar

    [24]

    Cakir D, Peeters F M, Sevik C 2014 Appl. Phys. Lett. 104 203110Google Scholar

    [25]

    Shukla A, Gaur N K 2020 Chem. Phys. Lett. 754 137717Google Scholar

    [26]

    Shang J, Li C, Tang X, Du A J, Liao T, Gu Y T, Ma Y D, Kou L Z, Chen C F 2020 Nanoscale 12 14847Google Scholar

    [27]

    Chaouche A C, Lachebi A, Abid H, Benchehima M, Driz M 2019 Superlattices Microstruct. 130 249Google Scholar

    [28]

    Zhu Y Y, Ji X, Cheng S, Chern Z Y, Jia J, Yang L F, Luo H W, Yu J Y, Peng X W, Wang J H, Zhou W J, Liu M L 2019 Acs Nano 13 9091Google Scholar

    [29]

    Wang Y J, Li F F, Zheng H L, Han X F, Yan Y 2018 Phys. Chem. Chem. Phys. 20 28162Google Scholar

    [30]

    Huang Q J, Ma J L, Xu D W, Hu R, Luo X B 2020 J. Appl. Phys. 128 185111Google Scholar

    [31]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [32]

    Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar

    [33]

    Ho T H, Dong H C, Bui V Q, Kawazoe Y, Le H M 2020 Phys. Chem. Chem. Phys. 22 18149Google Scholar

    [34]

    Yuan H, Li Z Y, Yang J L 2018 J. Mater. Chem. C 6 9055Google Scholar

    [35]

    Mohammed H A H, Dongho-Nguimdo G M, Joubert D P 2021 Physica E 127 114514Google Scholar

    [36]

    Lei Z H, Wang W L, She J C 2021 Chin. Phys. B 30 047102Google Scholar

    [37]

    Shimazaki T, Suzuki T, Kubo M 2011 Theor. Chem. Acc. 130 1031Google Scholar

    [38]

    Shokri A, Yazdani A, Rahimi K 2020 Mater. Chem. Phys. 255 123617Google Scholar

    [39]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Blochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [44]

    Eriksson F, Fransson E, Erhart P 2019 Adv. Theor. Simul. 2 1800184Google Scholar

    [45]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [46]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [47]

    Zhang C Z, Liu J Y, Shen H M, Lo X Z, Sun Q 2017 Chem. Mater. 29 8588Google Scholar

    [48]

    Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y 2014 J. Chem. Phys. 140 114702Google Scholar

    [49]

    Qin Y, Zha X H, Bai X, Luo K, Huang Q, Wang Y, Du S 2020 J. Phys.: Condens. Matter 32 135302Google Scholar

    [50]

    Xiong W Q, Huang K X, Yuan S J 2019 J. Mater. Chem. C 7 13518Google Scholar

    [51]

    Lajevardipour A, Neek-Amal M, Peeters F M 2012 J. Phys-Condens. Mat. 24 175303Google Scholar

    [52]

    Hess P 2017 Nanotechnology 28 064002Google Scholar

    [53]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [54]

    Jain A, McGaughey A J 2015 Sci. Rep. 5 8501Google Scholar

    [55]

    Hossain M T, Rahman M A 2020 J. Mol. Model. 26 40Google Scholar

    [56]

    Min K, Aluru N R 2011 Appl. Phys. Lett. 98 013113Google Scholar

    [57]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar

    [58]

    Jing Y, Ma Y D, Li Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [59]

    Pu C Y, Yu J H, Yu R M, Tang X, Zhou D W 2019 J. Mater. Chem. C 7 12231Google Scholar

    [60]

    Zha X H, Zhou J, Luo K, Lang J J, Huang Q, Zhou X, Francisco J S, He J, Du S 2017 J. Phys.: Condens. Matter. 29 165701Google Scholar

    [61]

    Xu Y, Liu G, Xing S A, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [62]

    Fei R X, Li Y 2014 Nano Lett. 14 2884Google Scholar

    [63]

    Fang R H, Cui X Y, Stampfl C, Ringer S P, Zheng R K 2020 Phys. Chem. Chem. Phys. 22 2276Google Scholar

    [64]

    Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chinese Phys. Lett. 31 027301Google Scholar

    [65]

    Nemec H, Kratochvilova I, Kuzel P, Sebera J, Kochalska A, Nozar J, Nespurek S 2011 Phys. Chem. Chem. Phys. 13 2850Google Scholar

    [66]

    Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716Google Scholar

    [67]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [68]

    Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 Sci. Rep-Uk 6 20225Google Scholar

    [69]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [70]

    Cai Y Q, Lan J H, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar

    [71]

    Zulfiqar M, Zhao Y C, Li G, Li Z C, Ni J 2019 Sci. Rep-Uk 9 4571Google Scholar

    [72]

    Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar

    [73]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [74]

    Chen X K, Chen K Q 2020 J. Phys.: Condens. Matter. 32 153002Google Scholar

  • 图 1  二维XO2 (X = Ni, Pd, Pt)的晶体结构 (a) 俯视图; (b), (c) 侧视图; (d) K点路径

    Fig. 1.  Crystal structures of monolayer XO2 (X = Ni, Pd, Pt): (a) Top view; (b), (c) side view; (d) K points path.

    图 2  不同相结构的XO2的结合能 (a) NiO2; (b) PdO2; (c) PtO2

    Fig. 2.  Binding energies of XO2 with different phase structures: (a) NiO2; (b) PdO2; (c) PtO2.

    图 3  二维XO2 (X = Ni, Pd, Pt)的(a) 杨氏模量、(b) 泊松比和 (c) 应力-应变曲线

    Fig. 3.  (a) Young's modulus, (b) Poisson's ratio, and (c) stress-strain curves of monolayer XO2 (X = Ni, Pd, Pt).

    图 4  二维XO2 (X = Ni, Pd, Pt)电子局域函数 (a) NiO2; (b) PdO2; (c) PtO2

    Fig. 4.  Electron localization functions (ELFs) of (a) NiO2, (b) PdO2, (c) PtO2 plotted in a 2 × 2 × 1 supercell.

    图 5  二维XO2 (X = Ni, Pd, Pt)能带结构和分波态密度 (a) NiO2; (b) PdO2; (c) PtO2

    Fig. 5.  Band structures and density of states of monolayer XO2 (X = Ni, Pd, Pt) (a) NiO2; (b) PdO2; (c) PtO2.

    图 6  二维XO2 (X = Ni, Pd, Pt)平面刚度和形变势拟合曲线 (a)−(c) NiO2; (d)−(f) PdO2; (g)−(i) PtO2. (a), (d), (g)能量对单轴应变的二次项拟合来计算平面刚度; (b)和(c), (e)和(f), (h)和(i) 沿扶手椅和之字形方向价带顶和导带底的能量对应变量的线性拟合, 用于计算变形势

    Fig. 6.  Schematic diagram of plane stiffness and deformation potential of monolayer XO2 (X = Ni, Pd, Pt): (a)−(c) NiO2; (d)−(f) PdO2; (g)−(i) PtO2. (a), (d), (g) Quadratic fitting of the energy difference to the uniaxial strain are used to calculate the plane stiffness. (b) and (c), (e) and (f), (h) and (i) Linear fitting of the energy of VBM and CBM relative to the uniaxial strain along armchair and zigzag direction, which are used to calculate the deformation potential.

    图 7  二维XO2 (X = Ni, Pd, Pt)的(a)−(c) 声子谱、(d)−(f) 声子群速度和 (g)−(i) 声子寿命

    Fig. 7.  (a)−(c) Phonon dispersion, (d)−(f) group velocities and (g)−(i) phonon lifetimes of monolayer XO2 (X = Ni, Pd, Pt)

    图 8  二维XO2 (X = Ni, Pd, Pt)的晶格热导率

    Fig. 8.  Lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt).

    表 1  二维XO2 (X = Ni, Pd, Pt)结构参数和结合能

    Table 1.  Structure parameters and binding energies of monolayer XO2 (X = Ni, Pd, Pt).

    Monolayersa/blθ1/(°)θ2/(°)hEf/(eV·atom–1)Band gap/eV
    PBEPBE + SOCHSE06
    NiO22.821.8896.8483.161.905.781.391.212.95
    PdO23.072.0398.5481.461.964.931.501.403.00
    PtO23.132.0599.6480.341.935.771.831.733.34
    下载: 导出CSV

    表 2  在300 K下, 二维XO2 (X = Ni, Pd, Pt)的有效质量(m*)、弹性模量(C 2D)、形变势(El)、电子和空穴迁移率(μ)

    Table 2.  Calculated effective mass (m*), elastic modulus (C 2D), deformation-potential constant (El), electron and hole mobility (μ) of monolayer XO2 (X = Ni, Pd, Pt) at 300 K.

    MaterialsDirectionCarrier typem*/m0C 2D/(N·m–1)El/eVμ/(cm2·V–1·s–1)
    NiO2ArmchairElectron0.63134.810.5613707.96
    Hole2.002.2953.25
    ZigzagElectron1.80135.210.881944.53
    Hole13.192.268.32
    PdO2ArmchairElectron0.81113.381.281288.12
    Hole2.523.0219.18
    ZigzagElectron2.42114.252.10162.17
    Hole11.813.014.16
    PtO2ArmchairElectron0.80122.604.27404.71
    Hole1.171.51270.60
    ZigzagElectron2.51123.254.2740.46
    Hole8.771.5140.86
    BPa-axisElectron0.1724.811.592652.06
    Hole0.162.66495.37
    b-axisElectron1.25105.455.27140.35
    Hole5.710.1324469.72
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Wang D, Song X L, Li P, Gao X J J, Gao X F 2020 J. Mater. Chem. B 8 9028Google Scholar

    [3]

    Halo M, Casassa S, Maschio L, Pisani C, Dovesi R, Ehinon D, Baraille I, Rerat M, Usvyat D 2011 Phys. Chem. Chem. Phys. 13 4434Google Scholar

    [4]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [5]

    Fang W Y, Kang W B, Zhao J, Zhang P C 2020 Chin. Phys. B 29 096301Google Scholar

    [6]

    Yeoh K H, Yoon T L, Rusi, Ong D S, Lim T L 2018 Appl. Surf. Sci. 445 161Google Scholar

    [7]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85Google Scholar

    [8]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [9]

    Yang Y, Zhang H, Song L H, Liu Z L 2021 Appl. Surf. Sci. 542 148691Google Scholar

    [10]

    Li X B, Guo P, Cao T F, Liu H, Lau W M, Liu L M 2015 Sci. Rep. 5 10848Google Scholar

    [11]

    Sharma S, Kumar S, Schwingenschlögl U 2017 Phys. Rev. Appl. 8 044013Google Scholar

    [12]

    Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar

    [13]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [14]

    Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar

    [15]

    Yan P, Gao G Y, Ding G Q, Qin D 2019 Rsc Adv. 9 12394Google Scholar

    [16]

    Naghavi S S, He J, Xia Y, Wolverton C 2018 Chem. Mater. 30 5639Google Scholar

    [17]

    Hu Z Y, Li K Y, Lu Y, Huang Y, Shao X H 2017 Nanoscale 9 16093Google Scholar

    [18]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [19]

    Chen Z Y, Xiong M, Zeng Z Y, Chen X R, Chen Q F 2021 Solid State Commun. 326 114163Google Scholar

    [20]

    Rajput K, Roy D R 2019 Appl. Nanosci. 9 1845Google Scholar

    [21]

    Qu L H, Yu J, Mu Y L, Fu X L, Zhong C G, Min Y, Zhou P X, Zhang J M, Zou Y Q, Lu T S 2019 Mater. Res. Bull. 119 110533Google Scholar

    [22]

    Chaurasiya R, Dixit A, Pandey R 2019 J. Appl. Phys. 125 082540Google Scholar

    [23]

    Ersan F, Ozaydin H D, Gokoglu G, Akturk E 2017 Appl. Surf. Sci. 425 301Google Scholar

    [24]

    Cakir D, Peeters F M, Sevik C 2014 Appl. Phys. Lett. 104 203110Google Scholar

    [25]

    Shukla A, Gaur N K 2020 Chem. Phys. Lett. 754 137717Google Scholar

    [26]

    Shang J, Li C, Tang X, Du A J, Liao T, Gu Y T, Ma Y D, Kou L Z, Chen C F 2020 Nanoscale 12 14847Google Scholar

    [27]

    Chaouche A C, Lachebi A, Abid H, Benchehima M, Driz M 2019 Superlattices Microstruct. 130 249Google Scholar

    [28]

    Zhu Y Y, Ji X, Cheng S, Chern Z Y, Jia J, Yang L F, Luo H W, Yu J Y, Peng X W, Wang J H, Zhou W J, Liu M L 2019 Acs Nano 13 9091Google Scholar

    [29]

    Wang Y J, Li F F, Zheng H L, Han X F, Yan Y 2018 Phys. Chem. Chem. Phys. 20 28162Google Scholar

    [30]

    Huang Q J, Ma J L, Xu D W, Hu R, Luo X B 2020 J. Appl. Phys. 128 185111Google Scholar

    [31]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [32]

    Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar

    [33]

    Ho T H, Dong H C, Bui V Q, Kawazoe Y, Le H M 2020 Phys. Chem. Chem. Phys. 22 18149Google Scholar

    [34]

    Yuan H, Li Z Y, Yang J L 2018 J. Mater. Chem. C 6 9055Google Scholar

    [35]

    Mohammed H A H, Dongho-Nguimdo G M, Joubert D P 2021 Physica E 127 114514Google Scholar

    [36]

    Lei Z H, Wang W L, She J C 2021 Chin. Phys. B 30 047102Google Scholar

    [37]

    Shimazaki T, Suzuki T, Kubo M 2011 Theor. Chem. Acc. 130 1031Google Scholar

    [38]

    Shokri A, Yazdani A, Rahimi K 2020 Mater. Chem. Phys. 255 123617Google Scholar

    [39]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Blochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [44]

    Eriksson F, Fransson E, Erhart P 2019 Adv. Theor. Simul. 2 1800184Google Scholar

    [45]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [46]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [47]

    Zhang C Z, Liu J Y, Shen H M, Lo X Z, Sun Q 2017 Chem. Mater. 29 8588Google Scholar

    [48]

    Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y 2014 J. Chem. Phys. 140 114702Google Scholar

    [49]

    Qin Y, Zha X H, Bai X, Luo K, Huang Q, Wang Y, Du S 2020 J. Phys.: Condens. Matter 32 135302Google Scholar

    [50]

    Xiong W Q, Huang K X, Yuan S J 2019 J. Mater. Chem. C 7 13518Google Scholar

    [51]

    Lajevardipour A, Neek-Amal M, Peeters F M 2012 J. Phys-Condens. Mat. 24 175303Google Scholar

    [52]

    Hess P 2017 Nanotechnology 28 064002Google Scholar

    [53]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [54]

    Jain A, McGaughey A J 2015 Sci. Rep. 5 8501Google Scholar

    [55]

    Hossain M T, Rahman M A 2020 J. Mol. Model. 26 40Google Scholar

    [56]

    Min K, Aluru N R 2011 Appl. Phys. Lett. 98 013113Google Scholar

    [57]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar

    [58]

    Jing Y, Ma Y D, Li Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [59]

    Pu C Y, Yu J H, Yu R M, Tang X, Zhou D W 2019 J. Mater. Chem. C 7 12231Google Scholar

    [60]

    Zha X H, Zhou J, Luo K, Lang J J, Huang Q, Zhou X, Francisco J S, He J, Du S 2017 J. Phys.: Condens. Matter. 29 165701Google Scholar

    [61]

    Xu Y, Liu G, Xing S A, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [62]

    Fei R X, Li Y 2014 Nano Lett. 14 2884Google Scholar

    [63]

    Fang R H, Cui X Y, Stampfl C, Ringer S P, Zheng R K 2020 Phys. Chem. Chem. Phys. 22 2276Google Scholar

    [64]

    Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chinese Phys. Lett. 31 027301Google Scholar

    [65]

    Nemec H, Kratochvilova I, Kuzel P, Sebera J, Kochalska A, Nozar J, Nespurek S 2011 Phys. Chem. Chem. Phys. 13 2850Google Scholar

    [66]

    Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716Google Scholar

    [67]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [68]

    Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 Sci. Rep-Uk 6 20225Google Scholar

    [69]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [70]

    Cai Y Q, Lan J H, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar

    [71]

    Zulfiqar M, Zhao Y C, Li G, Li Z C, Ni J 2019 Sci. Rep-Uk 9 4571Google Scholar

    [72]

    Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar

    [73]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [74]

    Chen X K, Chen K Q 2020 J. Phys.: Condens. Matter. 32 153002Google Scholar

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [3] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高. 物理学报, 2024, 73(14): 146302. doi: 10.7498/aps.73.20240557
    [4] 韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华. 非金属原子掺杂扶手椅型砷烯纳米管的磁电子性质及调控. 物理学报, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [5] 曹胜果, 韩佳凝, 李占海, 张振华. 扶手椅型C3B纳米带: 结构稳定性、电子特性及调控效应. 物理学报, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [6] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [7] 汤家鑫, 范志强, 邓小清, 张振华. 非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应. 物理学报, 2022, 71(11): 116101. doi: 10.7498/aps.71.20212342
    [8] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [9] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [10] 嘉明珍, 王红艳, 陈元正, 马存良. Na+替位掺杂对Li2MnSiO4的电子结构以及Li+迁移过程的影响. 物理学报, 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [11] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响. 物理学报, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [12] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [14] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [15] 高潭华, 吴顺情, 胡春华, 朱梓忠. 二维BC2 N薄片的结构稳定性和电子性质. 物理学报, 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [16] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [17] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [18] 王贵春, 袁建民. Cu低维体系的结构和电子性质. 物理学报, 2003, 52(4): 970-977. doi: 10.7498/aps.52.970
    [19] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [20] 杨宏顺, 李鹏程, 柴一晟, 余旻, 李志权, 杨东升, 章良, 王喻宏, 李明德, 曹烈兆, 龙云泽, 陈兆甲. La2CuO4掺锌样品的低温电阻率与热导率研究. 物理学报, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
计量
  • 文章访问数:  6965
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-09-05
  • 上网日期:  2021-09-07
  • 刊出日期:  2021-12-20

/

返回文章
返回