搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光学相控阵双周期光场的关联成像

孙艳玲 曹瑞 王子豪 廖家莉 刘其鑫 冯俊波 吴蓓蓓

引用本文:
Citation:

基于光学相控阵双周期光场的关联成像

孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓

Correlated imaging based on biperiodic light field of optical phased array

Sun Yan-Ling, Cao Rui, Wang Zi-Hao, Liao Jia-Li, Liu Qi-Xin, Feng Jun-Bo, Wu Bei-Bei
PDF
HTML
导出引用
  • 关联成像近年来成为光学成像领域的研究热点, 光学相控阵集成度高、成本低和调制速率高等优点非常适合应用于关联成像. 本文使用二维独立相位控制的光学相控阵, 研究了光学相控阵产生的周期性赝热光场赋予关联成像的新特性: 分别在暗室、有相位干扰和有热光噪声的条件下基于双周期光场进行了无分束器的关联成像实验; 并利用光学相控阵双周期光场实现了图像拼接. 研究结果对于促进关联成像技术的进步、拓展光学相控阵的应用有重要的意义.
    Correlated imaging, or ghost imaging, has aroused the interest of researchers in recent years. Optical phased array (OPA) as a high-integration, low-cost, and high-speed light illuminating device is suitable for application in correlated imaging. Here we use a two-dimensional 4 × 4 silicon integrated OPA in which each channel has an independently tunable phase shifter. In this work, the new features of correlated imaging given by periodic pseudo-thermal light field of OPA are demonstrated. The correlated imaging with biperiodic light field of OPA under different conditions including darkroom, thermal noise and phase perturbation without splitter is reported; the image stitching based on biperiodic light field of OPA is also presented. This work is of significance in promoting the progress of imaging technology and expanding the application of OPA.
      通信作者: 孙艳玲, ylsun@mail.xidian.edu.cn ; 廖家莉, liaojiali@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62005207)和脉冲功率激光技术国家重点实验室开放基金(批准号: SKL2019KF06)资助的课题.
      Corresponding author: Sun Yan-Ling, ylsun@mail.xidian.edu.cn ; Liao Jia-Li, liaojiali@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62005207) and the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. SKL2019KF06).
    [1]

    刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰 2013 物理学报 62 184205Google Scholar

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205Google Scholar

    [2]

    白旭, 李永强, 赵生妹 2013 物理学报 62 044209Google Scholar

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar

    [3]

    李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 物理学报 63 224201Google Scholar

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201Google Scholar

    [4]

    Zhang Y, Shi J, Li H, Zeng G 2014 Chin. Opt. Lett. 12 011102Google Scholar

    [5]

    Li Q, Duan Z, Lin H, Gao S, Sun S, Liu W 2016 Chin. Opt. Lett. 14 111103Google Scholar

    [6]

    Wang Y, Liu Y, Suo J, Situ G, Qiao C, Dai Q 2017 Sci. Rep. 7 1Google Scholar

    [7]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Re. A 79 053840Google Scholar

    [8]

    Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R, Padgett M J 2014 Optica 1 285Google Scholar

    [9]

    Edgar M P, Gibson G M, Bowman R W, Sun B, Radwell N, Mitchell K J, Welsh S S, Padgett M J 2015 Sci. Rep. 5 1Google Scholar

    [10]

    Sun M-J, Edgar M P, Phillips D B, Gibson G M, Padgett M J 2016 Opt. Express 24 10476Google Scholar

    [11]

    Wang F, Wang H, Wang H, Li G, Situ G 2019 Opt. Express 27 25560Google Scholar

    [12]

    Rizvi S, Cao J, Zhang K, Hao Q 2020 Sci. Rep. 10 1Google Scholar

    [13]

    Sun M J, Zhang J M 2019 Sensors 19 732Google Scholar

    [14]

    Aflatouni F, Abiri B, Rekhi A, Hajimiri A 2015 Opt. Express 23 21012Google Scholar

    [15]

    Dong P, Chen L, Chen Y-k 2012 Opt. Express 20 6163Google Scholar

    [16]

    Doylend J K, Heck M, Bovington J T, Peters J D, Coldren L, Bowers J 2011 Opt. Express 19 21595Google Scholar

    [17]

    Komljenovic T, Helkey R, Coldren L, Bowers J E 2017 Opt. Express 25 2511Google Scholar

    [18]

    Yaacobi A, Sun J, Moresco M, Leake G, Coolbaugh D, Watts M R 2014 Opt. Lett. 39 4575Google Scholar

    [19]

    Poulton C V, Byrd M J, Raval M, Su Z, Li N, Timurdogan E, Coolbaugh D, Vermeulen D, Watts M R 2017 Opt. Lett. 42 21Google Scholar

    [20]

    Miller S A, Chang Y C, Phare C T, Shin M C, Zadka M, Roberts S P, Stern B, Ji X, Mohanty A, Gordillo O A J 2020 Optica 7 3Google Scholar

    [21]

    Kang G, Kim S H, You J B, Lee D S, Yoon H, Ha Y G, Kim J H, Yoo D E, Lee D W, Youn C H 2019 IEEE Photon. Technol. Lett. 31 1685Google Scholar

    [22]

    Poulton C V, Yaacobi A, Cole D B, Byrd M J, Raval M, Vermeulen D, Watts M R 2017 Opt. Lett. 42 4091Google Scholar

    [23]

    Poulton C V, Byrd M J, Russo P, Timurdogan E, Khandaker M, Vermeulen D, Watts M R 2019 IEEE Journal of Selected Topics in Quantum Electronics 25 1Google Scholar

    [24]

    Kim T, Bhargava P, Poulton C V, Notaros J, Yaacobi A, Timurdogan E, Baiocco C, Fahrenkopf N, Kruger S, Ngai T 2019 IEEE J. Solid-State Circuits 54 3061Google Scholar

    [25]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [26]

    Raval M, Yaacobi A, Watts M R 2018 Opt. Lett. 43 3678Google Scholar

    [27]

    Rhee H W, You J B, Yoon H, Han K, Kim M, Lee B G, Kim S C, Park H H 2020 IEEE Photon. Technol. Lett. 32 803Google Scholar

    [28]

    Magden E S, Li N, Raval M, Poulton C V, Ruocco A, Singh N, Vermeulen D, Ippen E P, Kolodziejski L A, Watts M R 2018 Nat. Commun. 9 1Google Scholar

    [29]

    Ou L H, Kuang L M 2007 Journal of Physics B:Atomic, Molecular and Optical Physics 40 1833Google Scholar

    [30]

    Kohno Y, Komatsu K, Tang R, Ozeki Y, Nakano Y, Tanemura T 2019 Opt. Express 27 3817Google Scholar

    [31]

    Komatsu K, Ozeki Y, Nakano Y, Tanemura T Optical Fiber Communication Conference pTh3H.4

    [32]

    van Acoleyen K, Bogaerts W, Jágerská J, Le Thomas N, Houdré R, Baets R 2009 Opt. Lett. 34 1477Google Scholar

    [33]

    Kwong D, Hosseini A, Covey J, Zhang Y, Xu X, Subbaraman H, Chen R T 2014 Opt. Lett. 39 941Google Scholar

    [34]

    Hulme J, Doylend J, Heck M, Peters J, Davenport M, Bovington J, Coldren L, Bowers J 2015 Opt. Express 23 5861Google Scholar

    [35]

    Zhang Y, Ling YC, Zhang K, Gentry C, Sadighi D, Whaley G, Colosimo J, Suni P, Yoo S B 2019 Opt. Express 27 1929Google Scholar

    [36]

    Miller S A, Phare C T, Chang Y C, Ji X, Gordillo O A J, Mohanty A, Roberts S P, Shin M C, Stern B, Zadka M CLEO: QELS_Fundamental Science pJTh5C.2

    [37]

    石顺祥, 王学恩, 马琳 2014 物理光学与应用光学 (西安: 西安电子科技大学出版社) 第151—153页

    Shi S X, Wang X E, Ma L 2014 Physical Optics and Applied Optics (Xi’an: Xidian University Press) pp151–153

  • 图 1  4×4 OPA数值仿真 (a) 单阵元远场分布; (b) 阵列因子强度分布; (c) OPA远场分布

    Fig. 1.  Numerical simulation of OPA: (a) Far field of an element; (b) intensity distribution of array factor; (c) far field of OPA.

    图 2  OPA关联成像原理示意图 (a) 传统关联成像; (b) 双周期光场关联成像

    Fig. 2.  Schematic diagram of correlated imaging with OPA: (a) Traditional correlated imaging; (b) correlated imaging with double-period field.

    图 3  OPA关联成像实验系统示意图 (a) OPA光场与虚拟目标运算流程图; (b)目标实物图

    Fig. 3.  Diagrammatic sketch of experiment system of correlated imaging with OPA: (a) Operation flowchart of OPA light field and virtual target; (b) the prototypes of target.

    图 4  虚拟目标的关联成像结果

    Fig. 4.  Experimental results of correlated imaging with virtual target.

    图 5  施加相位干扰前后红外相机接收的图像

    Fig. 5.  Images received by infrared camera before and after phase perturbation.

    图 6  不同条件下的成像结果 (a) 不同采样次数K的重构图; (b) 重构图PSNR随K的变化曲线

    Fig. 6.  Imaging results under different conditions: (a) Reconstructed images of different K; (b) PSNR of the reconstructed images with increasing K.

    图 7  通过OPA关联成像进行图像拼接的实验结果 (a) 参考光场; (b) 信号光场; (c) 重构图; (d) 叠加图

    Fig. 7.  Experimental results of image stitching by correlated imaging with OPA: (a) Reference light field; (b) signal light field; (c) reconstructed image; (d) stacked image.

  • [1]

    刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰 2013 物理学报 62 184205Google Scholar

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205Google Scholar

    [2]

    白旭, 李永强, 赵生妹 2013 物理学报 62 044209Google Scholar

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar

    [3]

    李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 物理学报 63 224201Google Scholar

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201Google Scholar

    [4]

    Zhang Y, Shi J, Li H, Zeng G 2014 Chin. Opt. Lett. 12 011102Google Scholar

    [5]

    Li Q, Duan Z, Lin H, Gao S, Sun S, Liu W 2016 Chin. Opt. Lett. 14 111103Google Scholar

    [6]

    Wang Y, Liu Y, Suo J, Situ G, Qiao C, Dai Q 2017 Sci. Rep. 7 1Google Scholar

    [7]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Re. A 79 053840Google Scholar

    [8]

    Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R, Padgett M J 2014 Optica 1 285Google Scholar

    [9]

    Edgar M P, Gibson G M, Bowman R W, Sun B, Radwell N, Mitchell K J, Welsh S S, Padgett M J 2015 Sci. Rep. 5 1Google Scholar

    [10]

    Sun M-J, Edgar M P, Phillips D B, Gibson G M, Padgett M J 2016 Opt. Express 24 10476Google Scholar

    [11]

    Wang F, Wang H, Wang H, Li G, Situ G 2019 Opt. Express 27 25560Google Scholar

    [12]

    Rizvi S, Cao J, Zhang K, Hao Q 2020 Sci. Rep. 10 1Google Scholar

    [13]

    Sun M J, Zhang J M 2019 Sensors 19 732Google Scholar

    [14]

    Aflatouni F, Abiri B, Rekhi A, Hajimiri A 2015 Opt. Express 23 21012Google Scholar

    [15]

    Dong P, Chen L, Chen Y-k 2012 Opt. Express 20 6163Google Scholar

    [16]

    Doylend J K, Heck M, Bovington J T, Peters J D, Coldren L, Bowers J 2011 Opt. Express 19 21595Google Scholar

    [17]

    Komljenovic T, Helkey R, Coldren L, Bowers J E 2017 Opt. Express 25 2511Google Scholar

    [18]

    Yaacobi A, Sun J, Moresco M, Leake G, Coolbaugh D, Watts M R 2014 Opt. Lett. 39 4575Google Scholar

    [19]

    Poulton C V, Byrd M J, Raval M, Su Z, Li N, Timurdogan E, Coolbaugh D, Vermeulen D, Watts M R 2017 Opt. Lett. 42 21Google Scholar

    [20]

    Miller S A, Chang Y C, Phare C T, Shin M C, Zadka M, Roberts S P, Stern B, Ji X, Mohanty A, Gordillo O A J 2020 Optica 7 3Google Scholar

    [21]

    Kang G, Kim S H, You J B, Lee D S, Yoon H, Ha Y G, Kim J H, Yoo D E, Lee D W, Youn C H 2019 IEEE Photon. Technol. Lett. 31 1685Google Scholar

    [22]

    Poulton C V, Yaacobi A, Cole D B, Byrd M J, Raval M, Vermeulen D, Watts M R 2017 Opt. Lett. 42 4091Google Scholar

    [23]

    Poulton C V, Byrd M J, Russo P, Timurdogan E, Khandaker M, Vermeulen D, Watts M R 2019 IEEE Journal of Selected Topics in Quantum Electronics 25 1Google Scholar

    [24]

    Kim T, Bhargava P, Poulton C V, Notaros J, Yaacobi A, Timurdogan E, Baiocco C, Fahrenkopf N, Kruger S, Ngai T 2019 IEEE J. Solid-State Circuits 54 3061Google Scholar

    [25]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [26]

    Raval M, Yaacobi A, Watts M R 2018 Opt. Lett. 43 3678Google Scholar

    [27]

    Rhee H W, You J B, Yoon H, Han K, Kim M, Lee B G, Kim S C, Park H H 2020 IEEE Photon. Technol. Lett. 32 803Google Scholar

    [28]

    Magden E S, Li N, Raval M, Poulton C V, Ruocco A, Singh N, Vermeulen D, Ippen E P, Kolodziejski L A, Watts M R 2018 Nat. Commun. 9 1Google Scholar

    [29]

    Ou L H, Kuang L M 2007 Journal of Physics B:Atomic, Molecular and Optical Physics 40 1833Google Scholar

    [30]

    Kohno Y, Komatsu K, Tang R, Ozeki Y, Nakano Y, Tanemura T 2019 Opt. Express 27 3817Google Scholar

    [31]

    Komatsu K, Ozeki Y, Nakano Y, Tanemura T Optical Fiber Communication Conference pTh3H.4

    [32]

    van Acoleyen K, Bogaerts W, Jágerská J, Le Thomas N, Houdré R, Baets R 2009 Opt. Lett. 34 1477Google Scholar

    [33]

    Kwong D, Hosseini A, Covey J, Zhang Y, Xu X, Subbaraman H, Chen R T 2014 Opt. Lett. 39 941Google Scholar

    [34]

    Hulme J, Doylend J, Heck M, Peters J, Davenport M, Bovington J, Coldren L, Bowers J 2015 Opt. Express 23 5861Google Scholar

    [35]

    Zhang Y, Ling YC, Zhang K, Gentry C, Sadighi D, Whaley G, Colosimo J, Suni P, Yoo S B 2019 Opt. Express 27 1929Google Scholar

    [36]

    Miller S A, Phare C T, Chang Y C, Ji X, Gordillo O A J, Mohanty A, Roberts S P, Shin M C, Stern B, Zadka M CLEO: QELS_Fundamental Science pJTh5C.2

    [37]

    石顺祥, 王学恩, 马琳 2014 物理光学与应用光学 (西安: 西安电子科技大学出版社) 第151—153页

    Shi S X, Wang X E, Ma L 2014 Physical Optics and Applied Optics (Xi’an: Xidian University Press) pp151–153

  • [1] 王子豪, 龙烨, 仇轲, 徐佳木, 孙艳玲, 范修宏, 马琳, 廖家莉, 康永强. 基于Adam算法的光学相控阵输出光束校准方法. 物理学报, 2024, 73(9): 094206. doi: 10.7498/aps.73.20231772
    [2] 常宸, 孙帅, 杜隆坤, 聂镇武, 何林贵, 张翼, 陈鹏, 鲍可, 刘伟涛. 室外环境中的关联成像研究进展. 物理学报, 2023, 72(18): 183301. doi: 10.7498/aps.72.20231245
    [3] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [4] 夏文飞, 陈剑锋, 龙利, 李志远. 金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联. 物理学报, 2021, 70(9): 097301. doi: 10.7498/aps.70.20210231
    [5] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像. 物理学报, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [6] 张瑞雪, 李洪国, 李宗国. 基于光场一阶关联的时域成像. 物理学报, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [7] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [8] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [9] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [10] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [11] 李晶, 宁提纲, 裴丽, 简伟, 郑晶晶, 油海东, 孙剑, 王一群, 李超. 基于谐波拟合产生周期性三角形光脉冲串的实验研究. 物理学报, 2014, 63(15): 154210. doi: 10.7498/aps.63.154210
    [12] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [14] 姚银萍, 万仁刚, 薛玉郎, 张世伟, 张同意. 基于统计光学的正负热光非定域成像. 物理学报, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [15] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [16] 吴 波, 蔡双双, 沈剑威, 沈永行. 基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器. 物理学报, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [17] 马红亮, 卫 栋, 叶晨光, 张 靖, 彭堃墀. 利用周期性极化KTiOPO4晶体参量缩小过程产生明亮振幅压缩光. 物理学报, 2005, 54(8): 3637-3640. doi: 10.7498/aps.54.3637
    [18] 张 航. 基于δ声波场的生物组织光学断层成像研究. 物理学报, 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
    [19] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析. 物理学报, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [20] 陆明珠, 万明习, 施雨. 相控阵超声热疗场共轭直接合成的模式优化研究. 物理学报, 2001, 50(2): 347-353. doi: 10.7498/aps.50.347
计量
  • 文章访问数:  4673
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-08-03
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回