搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束对ZnO和TiO2辐照损伤的模拟计算

高旭东 杨得草 魏雯静 李公平

引用本文:
Citation:

电子束对ZnO和TiO2辐照损伤的模拟计算

高旭东, 杨得草, 魏雯静, 李公平

Simulation study of electron beam irradiation damage to ZnO and TiO2

Gao Xu-Dong, Yang De-Cao, Wei Wen-Jing, Li Gong-Ping
PDF
HTML
导出引用
  • 电子辐照在材料中产生的缺陷主要是相互独立的空位-间隙原子对, 由于不同靶原子的离位阈能不同, 通过改变电子束的能量可以调控在材料中产生的缺陷类型, 同时, 电子的注量又可以决定电子辐照产生的缺陷的浓度. ZnO和TiO2的磁光电特性受Zn空位、Ti空位、O空位、Zn间隙原子、Ti间隙原子等缺陷的影响, 因此可以通过电子辐照的方法在ZnO和TiO2中产生不同浓度的各类缺陷进而研究缺陷对材料磁光电特性的影响. 本文利用MCNP5程序结合蒙特卡罗辅助经典(MCCM)算法模拟计算了不同能量的点源电子束及面源电子束在纤锌矿ZnO和金红石TiO2中产生的辐照损伤(dpa)的大小及分布. 计算结果表明, 点源电子束在样品内部产生的dpa随着入射深度的增加先增大后减小, 而在横向方向很快衰减; 面源电子束产生的辐照损伤在样品内部随着入射深度的增加同样呈现先增加后减小的趋势, 同时dpa的最大值与电子束能量呈二次函数的关系; 电子束能量沉积的计算结果表明, 能量沉积区域的大小与电子束能量密切相关, 同时随着电子束能量的增加, 能量沉积最大值出现的位置逐渐向样品内部移动, 整个能量沉积区域具有前倾的趋势.
    Wurtzite ZnO and rutile TiO2 have important application value in solar cells, photocatalysts, self-cleaning coatings, etc. In addition, ZnO and TiO2 are crucial basic materials for the development of semiconductor spintronics devices due to room temperature ferromagnetism in the state of defects or doped specific elements. Many studies indicate that the magnetic, optical, and electrical properties of ZnO and TiO2 are affected by intrinsic defects (such as vacancies, interstitial atoms, etc.). Electron irradiation has the incomparable advantages over other particle beam irradiation, the defects produced by electron beam irradiation are mainly independent vacancy-interstitial atom pairs (Frenkel pairs), and there are no new doping elements introduced into the material during the irradiation by electron beam with energy of several MeV, that is, electron irradiation is a relatively “pure” particle irradiation method. On the one hand, since the displacement threshold energy values of different atoms are different from each other, the type of defect during electron irradiation can be controlled by the energy of the electron beam. On the other hand, the electron fluence can determine the concentration of defects. Therefore, various defects of different concentrations can be generated by electron irradiation, thereby studying the influences of related defects on the magnetic, optical, and electrical properties of ZnO and TiO2. However, simulation calculations related to electron beam irradiation damage are relatively scarce. Therefore, in this work, the electron beam irradiation damage is taken as a research topic and the related theoretical simulation calculations are carried out, which lays a theoretical foundation for subsequent experimental researches. The size and the distribution of radiation damage (dpa) caused by point source electrons and that by plane source electrons with different energy values in ZnO and TiO2 are simulated and calculated through the MCNP5 program combined with the MCCM algorithm. The calculation results show that O atoms and Zn atoms can be dislocated when the electron energy values are greater than 0.31 MeV and 0.87 MeV in ZnO, respectively; while in TiO2, O atoms and Ti atoms can be dislocated when the electron beam energy values are greater than 0.12 MeV and 0.84 MeV, respectively. The dpa caused by point source electrons is mainly distributed in the longitudinal direction, and attenuates quickly in the lateral direction; on the contrary, the dpa caused by plane source electrons first increases and then decreases with the augment of the electron incidence depth, and the unevenness of the dpa distribution becomes more serious with the increase of the electron energy. Therefore, for each of ZnO and TiO2, the dpa will be relatively even distribution when the thickness of the sample is about 0.25 mm. Furthermore, the calculation results of the electron energy deposition show that the size of the energy deposition area is closely related to the electron beam energy. At the same time, with the increase of the electron beam energy, the position where the maximum energy deposition appears gradually moves to the inside of the sample, and the entire energy deposition area has a tendency to lean forward.
      通信作者: 李公平, ligp@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975006, 11575074)资助的课题.
      Corresponding author: Li Gong-Ping, ligp@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975006, 11575074) .
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [3]

    Matsumoto Y, Takahashi R, Murakami M, Koida T, Fan X J, Hasegawa T, Fukumura T, Kawasaki M, Koshihara S Y, Koinuma H 2001 Jpn. J. Appl. Phys. 40 L1204Google Scholar

    [4]

    Xing G Z, Lu Y H, Tian Y F, Yi J B, Lim C C, Li Y F, Li G P, Wang D D, Yao B, Ding J, Feng Y P, Wu T 2011 AIP Advances 1 022152Google Scholar

    [5]

    Zhou S Q, Čižmár E, Potzger K, Krause M, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009 Phys. Rev. B 79 113201Google Scholar

    [6]

    Duhalde S, Vignolo M F, Golmar F, Chiliotte C, Torres C E R, Errico L A, Cabrera A F, Rentería M, Sánchez F H, Weissmann M 2005 Phys. Rev. B 72 161313Google Scholar

    [7]

    Olayinka A S, Adetunji B I, Idiodi J O A, Aghemelon U 2019 Int. J. Mod. Phys. B 33 1950036Google Scholar

    [8]

    Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J 2014 J. Lumin. 146 199Google Scholar

    [9]

    Liu B J, Liu K, Zhao J W, Wang W H, Ralchenko V, Geng F J, Yang L, Zhang S, Xue J J, Han J C 2020 Diamond Relat. Mater. 109 108026Google Scholar

    [10]

    Fujishima A, Zhang X T 2006 C. R. Chim. 9 750Google Scholar

    [11]

    Lin Q L, Xu N N, Li G P, Qian Z F, Liu H, Wang R H 2021 J. Mater. Chem. C 9 2858Google Scholar

    [12]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Lan C, Chen J S, Wang C L, Zhan X W, Zhang K 2020 RSC Adv. 10 18687Google Scholar

    [13]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 Opt. Mater. 101 109748Google Scholar

    [14]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 J. Supercond. Nov. Magn. 33 1535Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [17]

    刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙 2016 物理学报 65 206102Google Scholar

    Liu H, Li G P, Xu N N, Lin Q L, Yang L, Wang C L 2016 Acta Phys. Sin. 65 206102Google Scholar

    [18]

    李天晶, 李公平, 马公俊平, 高行新 2011 物理学报 60 116102Google Scholar

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102Google Scholar

    [19]

    Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101Google Scholar

    [20]

    Piñera I, Cruz C M, Van Espen P, Abreu Y, Leyva A 2012 Nucl. Instrum. Methods Phys. Res. , Sec. B 274 191Google Scholar

    [21]

    Cruz C M, Piñera I, Correa C, Abreu Y, Leyva A 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p4622

    [22]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J 2018 Nat. Commun. 9 1Google Scholar

    [23]

    Edmondson P D, Weber W J, Namavar F, Zhang Y W 2012 J. Nucl. Mater. 422 86Google Scholar

    [24]

    Piñera I, Cruz C M, Abreu Y, Leyva A 2007 Phys. Status Solidi A 204 2279Google Scholar

    [25]

    Pinera I, Abreu Y, Van Espen P, Díaz A, Leyva A, Cruz C M 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p1609

    [26]

    Oen O S, Holmes D K 1959 J. Appl. Phys. 30 1289Google Scholar

    [27]

    Cahn J H 1959 J. Appl. Phys. 30 1310Google Scholar

    [28]

    Bethe H A, Ashkin J 1953 Experimental Nuclear Physics (Vol. 1) (London: John Wiley & Sons, Iinc., New York Champan & Hall, Limited) pp252-256

    [29]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Eng. Des. 33 50Google Scholar

    [30]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J 2018 J. Nucl. Mater. 512 450Google Scholar

    [31]

    Kinchin G H, Pease R S 1955 J. Nucl. Energy (1954) 1 200Google Scholar

    [32]

    McKinley W A, Feshbach H 1948 Phys. Rev. 74 1759Google Scholar

    [33]

    Meese J M, Locker D R 1972 Solid State Commun. 11 1547Google Scholar

    [34]

    Zinkle S J, Kinoshita C 1997 J. Nucl. Mater. 251 200Google Scholar

    [35]

    Smith K L, Colella M 2003 J. Nucl. Mater. 321 19Google Scholar

    [36]

    Robinson M, Marks N A, Whittle K R, Lumpkin G R 2012 Phys. Rev. B 85 104105Google Scholar

    [37]

    Piñera I, Cruz C M, Leyva A, Abreu Y, Cabal A E, Van Espen P, Van Remortel N 2014 Nucl. Instrum. Methods Phys. Res. , Sec. B 339 1Google Scholar

  • 图 1  MCNP5采用程序模拟几何结构图 (a) 点源电子束; (b) 面源电子束

    Fig. 1.  Schematic diagram of the geometry structure used by MCNP5 program: (a) Point source electron; (b) plane source electron.

    图 2  1.0 MeV的电子束在纤锌矿ZnO及金红石TiO2样品中的吸收曲线

    Fig. 2.  Absorption curve of 1.0 MeV electron beam in wurtzite ZnO and rutile TiO2 sample.

    图 3  相对论性电子与静止原子的能量传递 (a) 64Zn; (b) 48Ti; (c) 16O

    Fig. 3.  Energy transfer between relativistic electron and stationary atom: (a) 64Zn; (b) 48Ti; (c) 16O.

    图 4  离位损伤截面 (a) wurtzite ZnO; (b) rutile TiO2

    Fig. 4.  Displacement cross section: (a) wurtzite ZnO; (b) rutile TiO2.

    图 5  点源电子束在纤锌矿ZnO中产生的dpa的分布 (a) 0.5 MeV; (b) 0.8 MeV; (c) 1.0 MeV; (d) 1.5 MeV

    Fig. 5.  Distribution of dpa produced by Point Source Electron in wurtzite ZnO: (a) 0.5 MeV; (b) 0.8 MeV; (c) 1.0 MeV; (d) 1.5 MeV.

    图 6  1.0 MeV电子辐照金红石TiO2时dpa的分布

    Fig. 6.  Distribution of dpa produced by 1.0 MeV electron in rutile TiO2.

    图 7  dpa随电子入射深度的变化曲线 (a) Wurtzite ZnO; (b) rutile TiO2

    Fig. 7.  The variation curve of dpa with electron incidence depth: (a) Wurtzite ZnO; (b) rutile TiO2.

    图 8  dpamax与电子能量的关系曲线 (a) Wurtzite ZnO; (b) rutile TiO2

    Fig. 8.  Relationship between dpamax and electron energy: (a) Wurtzite ZnO; (b) rutile TiO2.

    图 9  不同能量的理想点入射电子在纤锌矿ZnO中的能量沉积的分布

    Fig. 9.  Distribution of energy deposition of ideal point source electrons with different energies in wurtzite ZnO.

    图 10  不同能量的面源电子束在纤锌矿ZnO中的能量沉积的分布

    Fig. 10.  Distribution of energy deposition of plane source electrons with different energies in wurtzite ZnO.

    表 1  纤锌矿ZnO及金红石TiO2材料的平均激发势和离位阈能

    Table 1.  Average excitation potential and threshold energy of wurtzite ZnO and rutile TiO2.

    I /eVatomsTd /eV
    ZnO286.1Zn50[33]
    O55[33]
    TiO2179.5Ti69[36]
    O19[36]
    下载: 导出CSV
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [3]

    Matsumoto Y, Takahashi R, Murakami M, Koida T, Fan X J, Hasegawa T, Fukumura T, Kawasaki M, Koshihara S Y, Koinuma H 2001 Jpn. J. Appl. Phys. 40 L1204Google Scholar

    [4]

    Xing G Z, Lu Y H, Tian Y F, Yi J B, Lim C C, Li Y F, Li G P, Wang D D, Yao B, Ding J, Feng Y P, Wu T 2011 AIP Advances 1 022152Google Scholar

    [5]

    Zhou S Q, Čižmár E, Potzger K, Krause M, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009 Phys. Rev. B 79 113201Google Scholar

    [6]

    Duhalde S, Vignolo M F, Golmar F, Chiliotte C, Torres C E R, Errico L A, Cabrera A F, Rentería M, Sánchez F H, Weissmann M 2005 Phys. Rev. B 72 161313Google Scholar

    [7]

    Olayinka A S, Adetunji B I, Idiodi J O A, Aghemelon U 2019 Int. J. Mod. Phys. B 33 1950036Google Scholar

    [8]

    Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J 2014 J. Lumin. 146 199Google Scholar

    [9]

    Liu B J, Liu K, Zhao J W, Wang W H, Ralchenko V, Geng F J, Yang L, Zhang S, Xue J J, Han J C 2020 Diamond Relat. Mater. 109 108026Google Scholar

    [10]

    Fujishima A, Zhang X T 2006 C. R. Chim. 9 750Google Scholar

    [11]

    Lin Q L, Xu N N, Li G P, Qian Z F, Liu H, Wang R H 2021 J. Mater. Chem. C 9 2858Google Scholar

    [12]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Lan C, Chen J S, Wang C L, Zhan X W, Zhang K 2020 RSC Adv. 10 18687Google Scholar

    [13]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 Opt. Mater. 101 109748Google Scholar

    [14]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 J. Supercond. Nov. Magn. 33 1535Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [17]

    刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙 2016 物理学报 65 206102Google Scholar

    Liu H, Li G P, Xu N N, Lin Q L, Yang L, Wang C L 2016 Acta Phys. Sin. 65 206102Google Scholar

    [18]

    李天晶, 李公平, 马公俊平, 高行新 2011 物理学报 60 116102Google Scholar

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102Google Scholar

    [19]

    Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101Google Scholar

    [20]

    Piñera I, Cruz C M, Van Espen P, Abreu Y, Leyva A 2012 Nucl. Instrum. Methods Phys. Res. , Sec. B 274 191Google Scholar

    [21]

    Cruz C M, Piñera I, Correa C, Abreu Y, Leyva A 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p4622

    [22]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J 2018 Nat. Commun. 9 1Google Scholar

    [23]

    Edmondson P D, Weber W J, Namavar F, Zhang Y W 2012 J. Nucl. Mater. 422 86Google Scholar

    [24]

    Piñera I, Cruz C M, Abreu Y, Leyva A 2007 Phys. Status Solidi A 204 2279Google Scholar

    [25]

    Pinera I, Abreu Y, Van Espen P, Díaz A, Leyva A, Cruz C M 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p1609

    [26]

    Oen O S, Holmes D K 1959 J. Appl. Phys. 30 1289Google Scholar

    [27]

    Cahn J H 1959 J. Appl. Phys. 30 1310Google Scholar

    [28]

    Bethe H A, Ashkin J 1953 Experimental Nuclear Physics (Vol. 1) (London: John Wiley & Sons, Iinc., New York Champan & Hall, Limited) pp252-256

    [29]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Eng. Des. 33 50Google Scholar

    [30]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J 2018 J. Nucl. Mater. 512 450Google Scholar

    [31]

    Kinchin G H, Pease R S 1955 J. Nucl. Energy (1954) 1 200Google Scholar

    [32]

    McKinley W A, Feshbach H 1948 Phys. Rev. 74 1759Google Scholar

    [33]

    Meese J M, Locker D R 1972 Solid State Commun. 11 1547Google Scholar

    [34]

    Zinkle S J, Kinoshita C 1997 J. Nucl. Mater. 251 200Google Scholar

    [35]

    Smith K L, Colella M 2003 J. Nucl. Mater. 321 19Google Scholar

    [36]

    Robinson M, Marks N A, Whittle K R, Lumpkin G R 2012 Phys. Rev. B 85 104105Google Scholar

    [37]

    Piñera I, Cruz C M, Leyva A, Abreu Y, Cabal A E, Van Espen P, Van Remortel N 2014 Nucl. Instrum. Methods Phys. Res. , Sec. B 339 1Google Scholar

  • [1] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊. Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响. 物理学报, 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [3] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [4] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [5] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [6] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质. 物理学报, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [7] 徐佳楠, 陈焕铭, 潘凤春, 林雪玲, 马治, 陈治鹏. 氧化锌掺钡的电子结构及其铁电性能研究. 物理学报, 2018, 67(10): 107701. doi: 10.7498/aps.67.20172263
    [8] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [9] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [10] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质. 物理学报, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [11] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [12] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [13] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [14] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [17] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [18] 杨 春, 李言荣, 颜其礼, 刘永华. α-Al2O3(0001)表面原子缺陷对ZnO吸附影响. 物理学报, 2005, 54(5): 2364-2368. doi: 10.7498/aps.54.2364
    [19] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  6639
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-08-02
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回