搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究

谈松林 庄永起 易健宏

引用本文:
Citation:

溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究

谈松林, 庄永起, 易健宏

Preparation and properties of multi-walled carbon nanotube reinforced alumina composites by sol- spray method

Tan Song-Lin, Zhuang Yong-Qi, Yi Jian-Hong
PDF
HTML
导出引用
  • 采用溶胶-喷雾制备了多壁碳纳米管增强氧化铝基球形复合粉体, 采用放电等离子真空快速烧结成型. SEM分析测试结果表明, 多壁碳纳米管在氧化铝基体中呈网络分布, 且主要位于晶界处, 少量呈穿晶分布. 复合材料性能分析测试结果表明, 当多壁碳纳米管的质量分数为0.5%时, 复合材料的维氏硬度相对纯的氧化铝提高了32.6%; 热扩散系数在不同测试温度下相对纯氧化铝的平均提高幅度为27.2%. 此外, 当多壁碳纳米管质量分数达到0.5%时复合材料呈导体, 根据渗流导电理论拟合得到实验制备复合材料的渗流阈值为0.32 wt.%, 说明多壁碳纳米管在氧化铝基体中分散良好.
    The spherical composite powders of multi-walled carbon nanotubes reinforced alumina are prepared by sol- spray. The results show that the multi-walled carbon nanotubes are well dispersed in the composites. The analyses of the composite properties show that most of the multi-walled carbon nanotubes are distributed in a network at the grain boundaries, and a small number of them are distributed in the grains. When the mass fraction of multi-walled carbon nanotubes accounts for 0.5%, the Vickers hardness of the composite increases by 32.6% relative to pure alumina; the thermal diffusion coefficient increased averagely by 27.2% with respect to pure alumina at different temperatures. The composites are conductive at 0.5% of multi-walled carbon nanotubes, and the percolation threshold of the composites prepared by this method is 0.32wt.% based on the fitting of the percolation conductivity theory, indicating that the multi-walled carbon nanotubes are well dispersed in the alumina matrix.
      通信作者: 谈松林, tansonglin@icloud.com
    • 基金项目: 国家自然科学基金(批准号: 51741102)、云南省教育厅重大项目(批准号: 2016CYH08)和云南省科技厅创新团队(批准号: 2017HC033)资助的课题.
      Corresponding author: Tan Song-Lin, tansonglin@icloud.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51741102), the Major projects of Yunnan Provincial Department of Education (Grant No. 2016CYH08) and Innovation team of Yunnan Provincial Science and Technology Department (Grant No. 2017HC033).
    [1]

    Iijima, Sumio 1991 Nature 354 56Google Scholar

    [2]

    Ke C, Jia C C, Li W S 2013 Appl. Phys. A 110 269Google Scholar

    [3]

    Chan K F, Zaid M, Mamat M S, Liza S, Yaakob Y 2021 Crystals 11 457Google Scholar

    [4]

    Park S S, Moorthy M S, Ha C S 2014 Korean J. Chem. Eng. 31 1707Google Scholar

    [5]

    Hassan R U, Shahzad F, Abbas N, Hussain, S 2019 J. Mater. Sci-Mater EI. 30 6304

    [6]

    康艳茹, 何禧佳, 殷正娥, 李亚利 2018 复合材料学报 35 150

    Kang Y R, He X J, Yin Z E, Li Y L 2018 Acta Mater. Compos. Sin. 35 150

    [7]

    Ngo I L, Jeon S, Chan B 2016 Int J Heat Mass Tran. 98 219Google Scholar

    [8]

    Li C, Liang T, Lu W, Tang C, Hu X, Cao M 2004 Compos. Sci. Technol. 64 2089Google Scholar

    [9]

    Lee T H, Cho S H, Lee T G 2018 J. Am. Ceram. Soc. 101 3156Google Scholar

    [10]

    Chung, D D L. 2001 Carbon 39 279Google Scholar

    [11]

    Singh M A, Sarma D K, Hanzel O, Sedláček J, Šajgalík P 2017 J. Eur. Ceram. Soc. 37 3107Google Scholar

    [12]

    Nan C W, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666Google Scholar

    [13]

    Lanfant B, Leconte Y, Debski N, Bonnefont G, Bernard F 2018 Ceram. Int. 45 2566

    [14]

    Kaiser A B, G Düsberg, Roth S 1998 Phys. Rev. B 57 1418Google Scholar

    [15]

    Momohjimoh I, Saheb N, Hussein M A, Laoui T, Aqeeli N. 2020 Ceram. Int. 46 16008Google Scholar

    [16]

    Lanfant B, Leconte Y, Debski N, Pinault M, Mayne M, Herlin N 2014 Tech. Connect. World Washington, June 15−18 2014 p131.

    [17]

    Liu C, Ding J 2020 Procedia Manufacturing 48 763Google Scholar

    [18]

    Zhan G D, Mukherjee A K 2010 Int. J. Appl. Ceram. Tec. 1 161

    [19]

    Saheb N, Hayat U 2017 Ceram. Int. 43 5715Google Scholar

    [20]

    Lee K, Chan B M, Park S B, Hong S H 2011 J. Am. Ceram. Soc. 94 3774Google Scholar

    [21]

    Kumari L, Zhang T, Du G H, Li W Z, Wang Q W, Datye A Wu K H 2009 Ceram. Int. 35 1775Google Scholar

    [22]

    Estili M, Sakka Y 2014 Sci. Technol. Adv. Mat. 15 064902Google Scholar

    [23]

    Zhang S C, Fahrenholtz W G, Hilmas G E, Yadlowsky E J 2010 J. Eur. Ceram. Soc. 30 1373Google Scholar

    [24]

    Barinov S M, Fateeva L V, Yurashev S V, Ballóková E, Rudnayová E 2002 Powder Metall. Prog. 22 61

    [25]

    Lin J, Fan G, Li Z, Kai X, Di Z, Chen Z, Humphries S, Heness G, Yeung W Y Z 2011 Carbon 49 1965Google Scholar

    [26]

    Damavandi B Y, Xia Y, Ahmad I, Zhu Y 2017 Veruscript Functional Nanomaterials 41 1

    [27]

    Groffman P M, Baron J S, Blett T, Gold A, Goodman I, Gunderson L H, Levinson B M, Palmer M A, Paerl H W, Peterson G D 2006 Ecosystems 9 1Google Scholar

    [28]

    S M 1994 Applications of Percolation Theory(Los Angeles: CRC Press) pp53−57.

    [29]

    Bergman D J 1980 Phys. Rev. Lett. 44 1285Google Scholar

    [30]

    Liu Y, Lin, Y, Shi Z, Nan, C W, Shen Z J 2005 J. Am. Ceram. Soc. 88 1337Google Scholar

    [31]

    Meir Y 2012 Physica A 302 391

  • 图 1  溶胶-喷雾制备的球形粉末SEM图 (a) 300 ℃喷雾后的水合氢氧化铝; (b) 900 ℃热处理后的Al2O3; (c) (d)300 ℃喷雾干燥后的1% MWNT/Al2O3粉末; (e) (f) 为(c)氩气中900 ℃热处理后的1% MWNT/Al2O3粉末

    Fig. 1.  SEM of spherical powder prepared by sol-spray: (a) Hydrated aluminum hydroxide after spray drying at 300 ℃; (b) Al2O3 after heat treatment at 900 ℃; (c) and (d) 1% MWNT/Al2O3 composites powder after spray drying at 300 ℃; (e) and (f) 1% MWNT/Al2O3 composites powder after heat treatment at 900 ℃ in argon.

    图 2  Al2O3及MWNT/Al2O3复合材料断面SEM照片 (a)为纯氧化铝; (b)(d)MWNTs质量分数为0.5%; (c) MWNTs质量分数为1%

    Fig. 2.  SEM of fracture surface of pure alumina and MWNT/Al2O3 composites (a) pure alumina; (b) (d) 0.5% MWNT/Al2O3 composites; (c) 1% MWNT/Al2O3 composites.

    图 3  不同质量分数MWNT/Al2O3复合材料XRD图谱

    Fig. 3.  XRD patterns of MWNT/Al2O3 composites with different mass fractions.

    图 4  MWNT/Al2O3复合材料(1#—6#)电导率拟合曲线

    Fig. 4.  Fitting curve of the conductivity of MWNT/Al2O3 composite’s(1#–6#).

    图 5  MWNT/Al2O3复合材料(1#-6#)热导率与MWNTs质量分数关系曲线

    Fig. 5.  Curves between the thermal conductivity of composite materials(1#–6#) and the mass fraction of MWNTs.

    表 1  MWNT/Al2O3复合材料性能测试结果

    Table 1.  Properties of MWNT/Al2O3 composite.

    编号样品名称及烧结参数相对密度/%维氏硬度/HV电导率/(S·cm–1)
    1#0.0%WMNTs(3 min × 1450 ℃ × 40 MPa)1001436.710–13
    2#0.1%WMNTs(3 min × 1450 ℃ × 40 MPa)99.11523.7
    3#0.5%WMNTs(3 min × 1450 ℃ × 40 MPa)98.71901.40.649
    4#1.0%WMNTs(3 min × 1450 ℃ × 40 MPa)98.51733.60.838
    5#2.0%WMNTs(3 min × 1450 ℃ × 40 MPa)98.01698.60.983
    6#4.0%WMNTs(3 min × 1450 ℃ × 40 MPa)97.31233.21.144
    改变烧结参数对性能影响
    7#1.0%WMNTs(6 min × 1450 ℃ × 40 MPa)98.51703.10.789
    8#1.0%WMNTs(9 min × 1450 ℃ × 40 MPa)98.71687.50.917
    9#1.0%WMNTs(3 min × 1450 ℃ × 50 MPa)98.81747.80.923
    10#1.0%WMNTs(3 min × 1500 ℃ × 40 MPa)98.61673.10.768
    下载: 导出CSV

    表 2  5% MWNT/Al2O3复合材料和纯Al2O3热扩散系数

    Table 2.  Thermal diffusivity of 0.5% MWNT/Al2O3 composite and pure Al2O3.

    测试
    温度/℃
    纯Al2O3
    扩散系数
    /(mm2·s–1)
    0.5% MWNT
    /Al2O3热扩散
    系数/(mm2·s–1)
    热扩散系数
    提高幅度/%
    507.859.7123.7
    1006.157.7726.2
    2004.355.5627.8
    3003.384.3428.4
    4002.813.5928.0
    5002.403.1029.3
    平均值27.2
    下载: 导出CSV
  • [1]

    Iijima, Sumio 1991 Nature 354 56Google Scholar

    [2]

    Ke C, Jia C C, Li W S 2013 Appl. Phys. A 110 269Google Scholar

    [3]

    Chan K F, Zaid M, Mamat M S, Liza S, Yaakob Y 2021 Crystals 11 457Google Scholar

    [4]

    Park S S, Moorthy M S, Ha C S 2014 Korean J. Chem. Eng. 31 1707Google Scholar

    [5]

    Hassan R U, Shahzad F, Abbas N, Hussain, S 2019 J. Mater. Sci-Mater EI. 30 6304

    [6]

    康艳茹, 何禧佳, 殷正娥, 李亚利 2018 复合材料学报 35 150

    Kang Y R, He X J, Yin Z E, Li Y L 2018 Acta Mater. Compos. Sin. 35 150

    [7]

    Ngo I L, Jeon S, Chan B 2016 Int J Heat Mass Tran. 98 219Google Scholar

    [8]

    Li C, Liang T, Lu W, Tang C, Hu X, Cao M 2004 Compos. Sci. Technol. 64 2089Google Scholar

    [9]

    Lee T H, Cho S H, Lee T G 2018 J. Am. Ceram. Soc. 101 3156Google Scholar

    [10]

    Chung, D D L. 2001 Carbon 39 279Google Scholar

    [11]

    Singh M A, Sarma D K, Hanzel O, Sedláček J, Šajgalík P 2017 J. Eur. Ceram. Soc. 37 3107Google Scholar

    [12]

    Nan C W, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666Google Scholar

    [13]

    Lanfant B, Leconte Y, Debski N, Bonnefont G, Bernard F 2018 Ceram. Int. 45 2566

    [14]

    Kaiser A B, G Düsberg, Roth S 1998 Phys. Rev. B 57 1418Google Scholar

    [15]

    Momohjimoh I, Saheb N, Hussein M A, Laoui T, Aqeeli N. 2020 Ceram. Int. 46 16008Google Scholar

    [16]

    Lanfant B, Leconte Y, Debski N, Pinault M, Mayne M, Herlin N 2014 Tech. Connect. World Washington, June 15−18 2014 p131.

    [17]

    Liu C, Ding J 2020 Procedia Manufacturing 48 763Google Scholar

    [18]

    Zhan G D, Mukherjee A K 2010 Int. J. Appl. Ceram. Tec. 1 161

    [19]

    Saheb N, Hayat U 2017 Ceram. Int. 43 5715Google Scholar

    [20]

    Lee K, Chan B M, Park S B, Hong S H 2011 J. Am. Ceram. Soc. 94 3774Google Scholar

    [21]

    Kumari L, Zhang T, Du G H, Li W Z, Wang Q W, Datye A Wu K H 2009 Ceram. Int. 35 1775Google Scholar

    [22]

    Estili M, Sakka Y 2014 Sci. Technol. Adv. Mat. 15 064902Google Scholar

    [23]

    Zhang S C, Fahrenholtz W G, Hilmas G E, Yadlowsky E J 2010 J. Eur. Ceram. Soc. 30 1373Google Scholar

    [24]

    Barinov S M, Fateeva L V, Yurashev S V, Ballóková E, Rudnayová E 2002 Powder Metall. Prog. 22 61

    [25]

    Lin J, Fan G, Li Z, Kai X, Di Z, Chen Z, Humphries S, Heness G, Yeung W Y Z 2011 Carbon 49 1965Google Scholar

    [26]

    Damavandi B Y, Xia Y, Ahmad I, Zhu Y 2017 Veruscript Functional Nanomaterials 41 1

    [27]

    Groffman P M, Baron J S, Blett T, Gold A, Goodman I, Gunderson L H, Levinson B M, Palmer M A, Paerl H W, Peterson G D 2006 Ecosystems 9 1Google Scholar

    [28]

    S M 1994 Applications of Percolation Theory(Los Angeles: CRC Press) pp53−57.

    [29]

    Bergman D J 1980 Phys. Rev. Lett. 44 1285Google Scholar

    [30]

    Liu Y, Lin, Y, Shi Z, Nan, C W, Shen Z J 2005 J. Am. Ceram. Soc. 88 1337Google Scholar

    [31]

    Meir Y 2012 Physica A 302 391

  • [1] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [2] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性. 物理学报, 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [3] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [4] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [5] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率. 物理学报, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [6] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [7] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [8] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理. 物理学报, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [9] 李振武. 纳米CdS/碳纳米管复合材料的光电特性. 物理学报, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [10] 潘金艳, 张文彦, 高云龙. 基于铟锡氧化物/Ti复合电极的高亮度碳纳米管场致发射冷阴极. 物理学报, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [11] 王建, 李会峰, 黄运华, 余海波, 张跃. 碳纳米管/四针状纳米氧化锌复合涂层的电磁波吸收特性. 物理学报, 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [12] 华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋. 微弧等离子喷涂碳纳米管/纳米Al2O3-TiO2复合涂层的吸波性能研究. 物理学报, 2009, 58(9): 6534-6541. doi: 10.7498/aps.58.6534
    [13] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [14] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究. 物理学报, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [15] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [16] 封 伟, 易文辉, 冯奕钰, 吴子刚, 张振中. 聚苯胺/碳纳米管复合体的制备及其三阶非线性光学性能研究. 物理学报, 2006, 55(7): 3772-3777. doi: 10.7498/aps.55.3772
    [17] 赵东林, 曾宪伟, 沈曾民. 碳纳米管/聚苯胺纳米复合管的制备及其微波介电特性研究. 物理学报, 2005, 54(8): 3878-3883. doi: 10.7498/aps.54.3878
    [18] 王 森, 俞国军, 巩金龙, 朱德彰, 何绥霞, 朱志远, 徐洪杰. 碳纳米管的氧化铝模板法合成及其退火效应研究. 物理学报, 2005, 54(10): 4949-4954. doi: 10.7498/aps.54.4949
    [19] 陈传盛, 陈小华, 李学谦, 张 刚, 易国军, 张 华, 胡 静. 碳纳米管增强镍磷基复合镀层研究. 物理学报, 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
    [20] 封 伟, 易文辉, 徐友龙, 连彦青, 王晓工, 吉野胜美. 聚苯胺-碳纳米管复合体的制备及其光响应. 物理学报, 2003, 52(5): 1272-1277. doi: 10.7498/aps.52.1272
计量
  • 文章访问数:  5158
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-09-02
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回