-
压缩态光场作为一种重要的量子光源, 在量子计算、量子通信、精密测量等领域有广泛的应用前景. 在非临界压缩光场产生的理论预测中, 阈值以上泵浦的简并光学参量振荡器(DOPO)产生横向空间分布为一阶厄米高斯模式的非临界压缩光场, 具有对泵浦光功率波动鲁棒性的量子特性, 因此在实验中具有重要的应用价值. 然而该非临界压缩光场的横向幅角随机旋转, 导致无法利用本底探针光对其压缩特性进行稳定的平衡零拍实验探测. 本文提出利用DOPO同时产生的与压缩光场空间正交的明亮光场作为本底探针光的实验探测方案. 理论分析表明, 该方案虽然引入了真空噪声, 但可以很好地抵消压缩光场空间模式随机旋转引入的探测输出动态波动, 得到3 dB的稳定探测结果, 且对本底探针光的相位波动具有鲁棒性. 因此该探测方案对于非临界压缩光场的实验研究具有重要的实用价值.The squeezed state, as an important quantum resource, has great potential applications in quantum computing, quantum communication and precision measurement. In the noncritically squeezed light theory, the predicted noncritically squeezed light can be generated by breaking the spontaneous rotational symmetry occurring in a degenerate optical parametric oscillator (DOPO) pumped above threshold. The reliability of this kind of squeezing is crucially important, as its quantum performance is robust to the pump power in experiment. However, the detected squeezing degrades rapidly in detection, because the squeezed mode orientation diffuses slowly, resulting in a small mode mismatch during the homodyne detection. In this paper, we propose an experimentally feasible scheme to detect noncritically squeezing reliable by employing the spatial mode swapping technic. Theoretically, the dynamic fluctuation aroused by random mode rotation in the squeezing detection can be compensated for perfectly, and 3 dB squeezing can be achieved robustly even with additional vacuum noise. Our scheme makes an important step forward for the experimental generation of noncritically squeezed light.
[1] 孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar
Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar
[2] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar
[3] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar
[4] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar
[5] Otterstrom N, Pooser R C, Lawrie B J 2014 Opt. Lett 39 6533Google Scholar
[6] Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar
[7] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A., Lam P K 2003 Science 301 940Google Scholar
[8] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C, Peng K 2020 Phys. Rev. Lett. 124 173602Google Scholar
[9] Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605Google Scholar
[10] Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett. 123 070506Google Scholar
[11] Zhang K, Wang W, Liu S, Pan X, Du J, Lou Y, Yu S, Lv S, Treps N, Fabre C, Jing J 2020 Phys. Rev. Lett. 124 090501Google Scholar
[12] Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar
[13] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[14] Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar
[15] de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar
[16] Patera G, Treps N, Fabre C, de Valcárcel G J 2009 Eur. Phys. J. D 56 123Google Scholar
[17] Chalopin B, Scazza F, Fabre C, Treps N 2010 Phys. Rev. A 81 061804Google Scholar
[18] Navarrete-Benlloch C, Patera G, de Valcárcel G J 2017 Phys. Rev. A 96 043801Google Scholar
[19] Optics Q Springer Berlin Heidelberg
[20] Navarrete-Benlloch C, Roldan E, de Valcarcel G J 2008 Phys. Rev. Lett. 100 203601Google Scholar
[21] Navarrete-Benlloch C, Romanelli A, Roldán E, de Valcárcel G J 2010 Phys. Rev. A 81 043829Google Scholar
[22] Navarrete-Benlloch C, Roldán E, de Valcárcel G J 2011 Phys. Rev. A 83 043812Google Scholar
[23] Navarrete-Benlloch C, de Valcárcel G J 2013 Phys. Rev. A 87 065802Google Scholar
[24] Fabre C, Cohadon P F, Schwob C 2009 Quantum Semiclassical Opt. 9 165
[25] Eckardt R C, Nabors C D, Kozlovsky W J, Byer R L 1991 J. Opt. Soc. Am. B:Opt. Phys. 8 646Google Scholar
[26] Harris S E 2005 Proc. IEEE 57 2096Google Scholar
[27] Pinel O, Jian P, Medeiros de Araujo R, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar
[28] Huo N, Zhou C H, Sun H X, Liu K, Gao J R 2016 Chin. Opt. Lett. 14 062702Google Scholar
[29] Ma L, Guo H, Sun H, Liu K, Su B D, Gao J R 2020 Photonics Res. 8 1422Google Scholar
-
图 3 LO场相位波动对压缩水平的影响 (a) LO场相位
$0 \to $ $ \pi$ , 分析频率与压缩水平的关系; (b) 不同LO场相位下的压缩水平, 从下往上依次对应LO光相位90°, 85°, 82.5°, 80°Fig. 3. (a) The phase of the LO field is from 0 to π, and the relationship between analysis frequency and squeezed level; (b) squeezed levels under different LO field phase, correspond the LO phase 90°, 85°, 82.5°, 80° (from bottom to top) respectively.
图 4 第一个分束器不平衡对测量结果的影响 (a) 分束器反射率
$ 0\to $ $ 1 $ , 分析频率与压缩水平的关系; (b)不同分束器反射率下的压缩水平Fig. 4. The relationship between the reflectivity of the first beam splitter and the squeezed level: (a) The reflectivity of the beam splitter ranges from 0 to 1, and the relationship between analysis frequency and squeezed level; (b) squeezed level under different beam splitter reflectivity.
-
[1] 孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar
Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar
[2] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar
[3] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar
[4] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar
[5] Otterstrom N, Pooser R C, Lawrie B J 2014 Opt. Lett 39 6533Google Scholar
[6] Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar
[7] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A., Lam P K 2003 Science 301 940Google Scholar
[8] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C, Peng K 2020 Phys. Rev. Lett. 124 173602Google Scholar
[9] Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605Google Scholar
[10] Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett. 123 070506Google Scholar
[11] Zhang K, Wang W, Liu S, Pan X, Du J, Lou Y, Yu S, Lv S, Treps N, Fabre C, Jing J 2020 Phys. Rev. Lett. 124 090501Google Scholar
[12] Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar
[13] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[14] Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar
[15] de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar
[16] Patera G, Treps N, Fabre C, de Valcárcel G J 2009 Eur. Phys. J. D 56 123Google Scholar
[17] Chalopin B, Scazza F, Fabre C, Treps N 2010 Phys. Rev. A 81 061804Google Scholar
[18] Navarrete-Benlloch C, Patera G, de Valcárcel G J 2017 Phys. Rev. A 96 043801Google Scholar
[19] Optics Q Springer Berlin Heidelberg
[20] Navarrete-Benlloch C, Roldan E, de Valcarcel G J 2008 Phys. Rev. Lett. 100 203601Google Scholar
[21] Navarrete-Benlloch C, Romanelli A, Roldán E, de Valcárcel G J 2010 Phys. Rev. A 81 043829Google Scholar
[22] Navarrete-Benlloch C, Roldán E, de Valcárcel G J 2011 Phys. Rev. A 83 043812Google Scholar
[23] Navarrete-Benlloch C, de Valcárcel G J 2013 Phys. Rev. A 87 065802Google Scholar
[24] Fabre C, Cohadon P F, Schwob C 2009 Quantum Semiclassical Opt. 9 165
[25] Eckardt R C, Nabors C D, Kozlovsky W J, Byer R L 1991 J. Opt. Soc. Am. B:Opt. Phys. 8 646Google Scholar
[26] Harris S E 2005 Proc. IEEE 57 2096Google Scholar
[27] Pinel O, Jian P, Medeiros de Araujo R, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar
[28] Huo N, Zhou C H, Sun H X, Liu K, Gao J R 2016 Chin. Opt. Lett. 14 062702Google Scholar
[29] Ma L, Guo H, Sun H, Liu K, Su B D, Gao J R 2020 Photonics Res. 8 1422Google Scholar
计量
- 文章访问数: 3915
- PDF下载量: 78
- 被引次数: 0