搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非临界压缩光场探测的实验方案研究

刘鹏 李娟 项晓 曹明涛 董瑞芳 刘涛 张首刚

引用本文:
Citation:

非临界压缩光场探测的实验方案研究

刘鹏, 李娟, 项晓, 曹明涛, 董瑞芳, 刘涛, 张首刚

Experimental scheme of non-critical squeezed light field detection

Liu Peng, Li Juan, Xiang Xiao, Cao Ming-Tao, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang
PDF
HTML
导出引用
  • 压缩态光场作为一种重要的量子光源, 在量子计算、量子通信、精密测量等领域有广泛的应用前景. 在非临界压缩光场产生的理论预测中, 阈值以上泵浦的简并光学参量振荡器(DOPO)产生横向空间分布为一阶厄米高斯模式的非临界压缩光场, 具有对泵浦光功率波动鲁棒性的量子特性, 因此在实验中具有重要的应用价值. 然而该非临界压缩光场的横向幅角随机旋转, 导致无法利用本底探针光对其压缩特性进行稳定的平衡零拍实验探测. 本文提出利用DOPO同时产生的与压缩光场空间正交的明亮光场作为本底探针光的实验探测方案. 理论分析表明, 该方案虽然引入了真空噪声, 但可以很好地抵消压缩光场空间模式随机旋转引入的探测输出动态波动, 得到3 dB的稳定探测结果, 且对本底探针光的相位波动具有鲁棒性. 因此该探测方案对于非临界压缩光场的实验研究具有重要的实用价值.
    The squeezed state, as an important quantum resource, has great potential applications in quantum computing, quantum communication and precision measurement. In the noncritically squeezed light theory, the predicted noncritically squeezed light can be generated by breaking the spontaneous rotational symmetry occurring in a degenerate optical parametric oscillator (DOPO) pumped above threshold. The reliability of this kind of squeezing is crucially important, as its quantum performance is robust to the pump power in experiment. However, the detected squeezing degrades rapidly in detection, because the squeezed mode orientation diffuses slowly, resulting in a small mode mismatch during the homodyne detection. In this paper, we propose an experimentally feasible scheme to detect noncritically squeezing reliable by employing the spatial mode swapping technic. Theoretically, the dynamic fluctuation aroused by random mode rotation in the squeezing detection can be compensated for perfectly, and 3 dB squeezing can be achieved robustly even with additional vacuum noise. Our scheme makes an important step forward for the experimental generation of noncritically squeezed light.
      通信作者: 曹明涛, mingtaocao@ntsc.ac.cn ; 董瑞芳, dongruifang@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12033007, 61875205, 61801458, 91836301)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SW-SLH007)、中国科学院战略性先导科技专项C类项目(批准号: XDC07020200)、中国科学院“西部青年学者”项目(批准号: XAB2019B17, XAB2019B15)和中国科学院重点项目(批准号: ZDRW-KT-2019-1-0103)资助的课题.
      Corresponding author: Cao Ming-Tao, mingtaocao@ntsc.ac.cn ; Dong Rui-Fang, dongruifang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033007, 61875205, 61801458, 91836301), the Frontier Science Key Research Project of Chinese Academy of Sciences (Grant No. QYZDB-SW-SLH007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07020200), the “Western Young Scholar” Project of Chinese Academy of Sciences (Grant Nos. XAB2019B17, XAB2019B15), and the Chinese Academy of Sciences Key Project, China (Grant No. ZDRW-KT-2019-1-0103).
    [1]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [2]

    Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar

    [3]

    Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar

    [4]

    Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar

    [5]

    Otterstrom N, Pooser R C, Lawrie B J 2014 Opt. Lett 39 6533Google Scholar

    [6]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar

    [7]

    Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A., Lam P K 2003 Science 301 940Google Scholar

    [8]

    Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C, Peng K 2020 Phys. Rev. Lett. 124 173602Google Scholar

    [9]

    Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [10]

    Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [11]

    Zhang K, Wang W, Liu S, Pan X, Du J, Lou Y, Yu S, Lv S, Treps N, Fabre C, Jing J 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [12]

    Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [14]

    Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar

    [15]

    de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar

    [16]

    Patera G, Treps N, Fabre C, de Valcárcel G J 2009 Eur. Phys. J. D 56 123Google Scholar

    [17]

    Chalopin B, Scazza F, Fabre C, Treps N 2010 Phys. Rev. A 81 061804Google Scholar

    [18]

    Navarrete-Benlloch C, Patera G, de Valcárcel G J 2017 Phys. Rev. A 96 043801Google Scholar

    [19]

    Optics Q Springer Berlin Heidelberg

    [20]

    Navarrete-Benlloch C, Roldan E, de Valcarcel G J 2008 Phys. Rev. Lett. 100 203601Google Scholar

    [21]

    Navarrete-Benlloch C, Romanelli A, Roldán E, de Valcárcel G J 2010 Phys. Rev. A 81 043829Google Scholar

    [22]

    Navarrete-Benlloch C, Roldán E, de Valcárcel G J 2011 Phys. Rev. A 83 043812Google Scholar

    [23]

    Navarrete-Benlloch C, de Valcárcel G J 2013 Phys. Rev. A 87 065802Google Scholar

    [24]

    Fabre C, Cohadon P F, Schwob C 2009 Quantum Semiclassical Opt. 9 165

    [25]

    Eckardt R C, Nabors C D, Kozlovsky W J, Byer R L 1991 J. Opt. Soc. Am. B:Opt. Phys. 8 646Google Scholar

    [26]

    Harris S E 2005 Proc. IEEE 57 2096Google Scholar

    [27]

    Pinel O, Jian P, Medeiros de Araujo R, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [28]

    Huo N, Zhou C H, Sun H X, Liu K, Gao J R 2016 Chin. Opt. Lett. 14 062702Google Scholar

    [29]

    Ma L, Guo H, Sun H, Liu K, Su B D, Gao J R 2020 Photonics Res. 8 1422Google Scholar

  • 图 1  非临界压缩光场的探测方案(以HG10模式为例)

    Fig. 1.  Detection scheme of non-critical squeezed light field (take HG10 mode as an example).

    图 2  初始时刻角度不匹配的测量结果

    Fig. 2.  Measurement results of angle mismatch at the initial moment.

    图 3  LO场相位波动对压缩水平的影响 (a) LO场相位$0 \to $$ \pi$, 分析频率与压缩水平的关系; (b) 不同LO场相位下的压缩水平, 从下往上依次对应LO光相位90°, 85°, 82.5°, 80°

    Fig. 3.  (a) The phase of the LO field is from 0 to π, and the relationship between analysis frequency and squeezed level; (b) squeezed levels under different LO field phase, correspond the LO phase 90°, 85°, 82.5°, 80° (from bottom to top) respectively.

    图 4  第一个分束器不平衡对测量结果的影响 (a) 分束器反射率$ 0\to $$ 1 $, 分析频率与压缩水平的关系; (b)不同分束器反射率下的压缩水平

    Fig. 4.  The relationship between the reflectivity of the first beam splitter and the squeezed level: (a) The reflectivity of the beam splitter ranges from 0 to 1, and the relationship between analysis frequency and squeezed level; (b) squeezed level under different beam splitter reflectivity.

  • [1]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [2]

    Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar

    [3]

    Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar

    [4]

    Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar

    [5]

    Otterstrom N, Pooser R C, Lawrie B J 2014 Opt. Lett 39 6533Google Scholar

    [6]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar

    [7]

    Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A., Lam P K 2003 Science 301 940Google Scholar

    [8]

    Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C, Peng K 2020 Phys. Rev. Lett. 124 173602Google Scholar

    [9]

    Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [10]

    Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [11]

    Zhang K, Wang W, Liu S, Pan X, Du J, Lou Y, Yu S, Lv S, Treps N, Fabre C, Jing J 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [12]

    Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [14]

    Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar

    [15]

    de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar

    [16]

    Patera G, Treps N, Fabre C, de Valcárcel G J 2009 Eur. Phys. J. D 56 123Google Scholar

    [17]

    Chalopin B, Scazza F, Fabre C, Treps N 2010 Phys. Rev. A 81 061804Google Scholar

    [18]

    Navarrete-Benlloch C, Patera G, de Valcárcel G J 2017 Phys. Rev. A 96 043801Google Scholar

    [19]

    Optics Q Springer Berlin Heidelberg

    [20]

    Navarrete-Benlloch C, Roldan E, de Valcarcel G J 2008 Phys. Rev. Lett. 100 203601Google Scholar

    [21]

    Navarrete-Benlloch C, Romanelli A, Roldán E, de Valcárcel G J 2010 Phys. Rev. A 81 043829Google Scholar

    [22]

    Navarrete-Benlloch C, Roldán E, de Valcárcel G J 2011 Phys. Rev. A 83 043812Google Scholar

    [23]

    Navarrete-Benlloch C, de Valcárcel G J 2013 Phys. Rev. A 87 065802Google Scholar

    [24]

    Fabre C, Cohadon P F, Schwob C 2009 Quantum Semiclassical Opt. 9 165

    [25]

    Eckardt R C, Nabors C D, Kozlovsky W J, Byer R L 1991 J. Opt. Soc. Am. B:Opt. Phys. 8 646Google Scholar

    [26]

    Harris S E 2005 Proc. IEEE 57 2096Google Scholar

    [27]

    Pinel O, Jian P, Medeiros de Araujo R, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [28]

    Huo N, Zhou C H, Sun H X, Liu K, Gao J R 2016 Chin. Opt. Lett. 14 062702Google Scholar

    [29]

    Ma L, Guo H, Sun H, Liu K, Su B D, Gao J R 2020 Photonics Res. 8 1422Google Scholar

  • [1] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象. 物理学报, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [2] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [3] 王恩权, 陈浩, 杨毅, 隆正文, HassanabadiHassan. 洛伦兹对称破缺框架下的广义克莱因-戈尔登谐振子. 物理学报, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [4] 刘鹏, 李娟, 项晓, 曹明涛, 董瑞芳, 刘涛, 张首刚. 基于非临界压缩光场探测的实验方案研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211212
    [5] 杨树政, 林恺. 洛仑兹破缺标量场的霍金隧穿辐射. 物理学报, 2019, 68(6): 060401. doi: 10.7498/aps.68.20182050
    [6] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [7] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 物理学报, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [8] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [9] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. Rabi模型的光场压缩. 物理学报, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [10] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [11] 高 瞻, 徐坚宏, 王振林. 无规场非晶化表面的临界行为. 物理学报, 1999, 48(11): 2131-2136. doi: 10.7498/aps.48.2131
    [12] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅲ)──replica对称破缺解. 物理学报, 1996, 45(1): 133-139. doi: 10.7498/aps.45.133
    [13] 谢瑞华. 二能级系统中光场压缩与原子偶极压缩间的对称特性. 物理学报, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [14] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究. 物理学报, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [15] 余扬政, 陈熊熊. 二维超对称模型的超对称破缺和Witten指数. 物理学报, 1993, 42(2): 214-222. doi: 10.7498/aps.42.214
    [16] 孙宗琦. 振动弯结与点缺陷交互作用时间平均场的对称破缺及自组织现象. 物理学报, 1992, 41(12): 1987-1992. doi: 10.7498/aps.41.1987
    [17] 蒲富恪, 王鼎盛. 非均匀铁磁体自发磁化的平均场理论. 物理学报, 1978, 27(4): 439-447. doi: 10.7498/aps.27.439
    [18] 侯伯宇. 各级微扰展开下自发破缺的规范无关性、么正性及可重整性. 物理学报, 1977, 26(4): 317-332. doi: 10.7498/aps.26.317
    [19] 赵保恒. 自发破缺规范理论中的光子-光子散射. 物理学报, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
    [20] 张裕恒. 超导In-Sn合金膜临界场的非线性非定域效应. 物理学报, 1966, 22(3): 341-359. doi: 10.7498/aps.22.341
计量
  • 文章访问数:  3915
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-09-09
  • 上网日期:  2021-12-26
  • 刊出日期:  2022-01-05

/

返回文章
返回